MICROWAVE MODELS OF INTERFERENCE LOGIC ELEMENTS

  • A.G. Bykov Federal State Unitary Enterprise "Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics"
  • I.V. Oshkin Federal State Unitary Enterprise "Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics"
  • V.B. Profe Federal State Unitary Enterprise "Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics"
  • S.A. Stepanenko Federal State Unitary Enterprise "Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics"
  • K.V. Trotsuk Federal State Unitary Enterprise "Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics"
  • E.V. Tjapkov Federal State Unitary Enterprise "Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics"
Keywords: Microwave interference logic gates, interference logic gates “AND”, interference logic gates “XOR”, interference logic gates “NOT”

Abstract

In the modern world interference logic gates (ILG) are an integral part of computers in the
modern world. One of the most important tasks of developers of new computing technology is to
reduce the duration of logical operations. This ensures the perfomance of various computing systems
used in large objects modeling with a large number of details in various industries and in
processing a large amount of information. A possible way to solve this problem is to use ILGs
based on the element base of the optical wavelength range. These models microwave ILG are being
developed for implement the functions of ILG based on a microstrip line in the ultra-high frequency
(UHF). The paper presents the result of modeling, engineering, manufacturing and testing models of microwave ILG which form a complete functional basis. A numerical simulation microwave
model ILG, which implements the functions “AND“, “XOR“ and “NOT“, has been carried
out. The model consists of four types microwave functional units: circulators, single-stage ring
power adder and power take-off elements, which are directional couplers, with lateral coupling
and with a given branch coefficient. The finite integration method in the time domain for numerical
system modelling is used to confirm the operational principle of ILGs and their realizability.
ILG mock-ups implement the functions “AND“, “XOR“ and “NOT“. The identity of the intensity
values corresponding to the logical “0“ and “1“, generated by different elements, is observed.
The execution duration of logical operations is determined by the duration of the pulse propagation
in the waveguide. The use of reactive elements in the design of the ILG makes it possible to
minimize the loss of microwave energy during the propagation of an electromagnetic pulse.

References

1. Stepanenko S.A. Fotonnaya vychislitel'naya mashina. Printsipy realizatsii. Otsenki parametrov
[Photonic computing machine. Principles of implementation. Parameter estimates], Doklady
akademii nauk [Reports of the Academy of Sciences], 2017, Vol. 476, No. 4, pp. 389-394.
2. Hussein M.E., Tamer A. Ali, and Rafat Nadia H. New designs of a complete set of Photonic
Crystals logic gates, Optics Communication, 2018, Vol. 411, pp. 175-181.
3. Xiaoting Wu, Jinping Tian, Rongcao Yang. A type of all-optical plasmon polaritons, Optics
Communications, 2017, Vol. 403, pp. 185-192.
4. Papaioannou Maria, Plum Eric, João Valente, Edward T.F. Rogers, and Zheludev Nikolay I.
All-optical multichannel logic based on coherent perfect absorption in a plasmonic
metamaterial, APL Photonics, 2016, Vol. 1. 090801. DOI: 10.1063/1.4966269.
5. Sun Xiao-Wen, Yang Xiu-Lun, Meng Xiang-Feng, Zhu Ji-Nan, Wang Yu-Rong, Yin Yong-Kai,
Dong Guo-Yan. Design and analysis of logic NOR, NAND and XNOR gates based on interference
effect, Quantum Electronics, 2018, Vol. 48, No. 2, pp. 178-183.
6. Stepanenko S.A. Interferentsionnye logicheskie elementy [Interference logic elements], Doklady
RAN «Matematika, informatika, protsessy upravleniya» [Reports of the Russian Academy of Sciences
"Mathematics, Computer Science, control processes"], 2020, Vol. 493, pp. 64-69.
7. Astaykin A.I., Trotsyuk K.V., Ionova S.P., Profe V.B. Teoriya i tekhnika SVCH: ucheb. posobie
[Theory and technique of microwave: a textbook]. Sarov: FGUP «RFYATS-VNIIEF», 2008, 446 p.
8. Baskakov S.I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and propagation
of radio waves]. Moscow: Vysshaya shkola, 1992.
9. Maloratskiy L.G., Yavich L.R. Proektirovanie i raschet elementov na poloskovykh liniyakh
[Design and calculation of elements on strip lines]. Moscow: Sov. radio, 1972.
10. Fel'dshteyn F.L., Yavich L.R., Smirnov V.P. Spravochnik po elementam volnovodnoy tekhniki
[Handbook on the elements of waveguide technology]. Moscow: Sov. radio, 1967.
11. Spravochnik po raschetu i konstruirovaniyu SVCh poloskovykh ustroystv [Handbook on the calculation
and design of microwave strip devices], ed. by A.L. Fel'dshteyna. Moscow: Svyaz', 1979.
12. Meynke M., Gundlakh F. Radiotekhnicheskiy spravochnik [Radio Engineering Handbook],
Vol. 1. Moscow: Gosenergoizdat, 1971.
13. Milovanov O.S., Sobenin N.P. Tekhnika sverkhvysokikh chastot [Ultrahigh frequency technology].
Moscow: Atomizdat, 1980.
14. Maloratskiy L.G. Mikrominiatyurizatsiya elementov i ustroystv SVCh [Microminiaturization
of microwave elements and devices]. Moscow: Sov. radio, 1976.
15. Sazonov D.M. Antenny i ustroystva SVCh [Antennas and microwave devices]. Moscow:
Vysshaya shkola, 1988.
16. Sazonov D.M., Gridin A.N., Mishustin B.A. Ustroystva SVCh [Microwave devices], ed. by
D.M. Sazonova. Moscow: Vysshaya shkola, 1981.
17. Konstruirovanie i raschet poloskovykh ustroystv [Design and calculation of strip devices],
ed. by I.S. Kovaleva. Moscow: Sov. radio, 1974.
18. Sosunov V.A., Shibaev A.A. Napravlennye otvetviteli sverkhvysokikh chastot [Directional couplers
of ultrahigh frequencies]. Saratov, 1964.
19. Lebedev I.V. Tekhnika i pribory SVCh [Microwave equipment and devices]. Moscow:
Vysshaya shkola, 1970.
20. Khizha Kh.S., Vendik I.B., Serebryakova E.A. SVCh – fazovrashchateli i pereklyuchateli [Microwave
phase shifters and switches]. Moscow: Radio i svyaz', 1984.
21. Kane Yee. Numerical solution of initial boundary value problems involving Maxvell’s equations
in isotropic media, IEEE Transactions on antennas and propogation, 1966, Vol. 14,
No. 3, pp. 302-307.
Published
2022-01-31
Section
SECTION I. ELECTRONICS AND RADIO ENGINEERING