SIMULATION OF WIRELESS MESH NETWORK BASED ON ZigBee SPECIFICATION

  • I.V. Rodygina Admiral Ushakov Maritime State University
  • V.A. Novak Admiral Ushakov Maritime State University
Keywords: WIRELESS network, ZigBee, MESH-network, CSMA/CA

Abstract

Currently, the most widespread wireless access technology, which is widely used to transmit
a large amount of traffic of various types, is the IEEE 802.11 wireless LAN standard. MESH networks
have become one of the most promising areas of technology development. MESH networks
provide the most interesting solutions integrating various wireless access technologies. The possibility
of organizing local (LAN) and metropolitan (MAN) networks using MESH topology, easily
integrating into wide area networks (WAN), is a positive factor for use on a ship. In maritime
practice, networks based on digitalization and automation are increasingly used. This article discusses
modeling the interaction of devices in a MESH network based on the ZigBee specification,
the principle of operation of the data link layer, which is used in this network, as well as a variant of the method for preventing increased consumption of energy used by the network. One of the
advantages of the ZigBee network is the ability to track network participants and the topology
itself in the mode of their frequent connections, disconnections and reconnections. In this case, it
is necessary to analyze the network speed, reliability, bandwidth. For this purpose, we estimated
the average waiting time for connecting a node, the probability of a successful connection of a
node to the network, the probability of finding a channel busy during the first and second probing
of the carrier, and a test of the throughput of the network under consideration. The obtained results
of the analysis indicate the operability of the network in various situations: both under normal
conditions and in a difficult jamming environment.

References

1. Vikhlyaeva V.V. Dinamicheskaya detsentralizovannaya energonezavisimaya besprovodnaya
set' ispol'zovaniem Mesh–seti na sudne [Dynamic decentralized non-volatile wireless network
using Mesh on the ship], Vestnik magistratury [Bulletin of the graduate], ed. by E.A. Murzina,
2019, No. 4-1 (91), pp. 26-27.
2. Lisnichuk A.A. Protsedura mnogokriterial'nogo sinteza signalov s pryamym rasshireniem spektra
dlya adaptatsii kognitivnykh radiosistem peredachi informatsii k slozhnoy pomekhovoy obstanovke
[The procedure of multicriteria synthesis of signals with direct spectrum expansion for the adaptation
of cognitive radio systems of information transmission to a complex interference environment],
Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta [Bulletin of the Ryazan
State Radio Engineering University], 2018, No. 4, Issue 66, Part 1, pp. 9-15.
3. IEEE Std 802.15.4-2996, September, Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs), IEEE, 2007.
4. Il'inykha N., Borisov A.P. Yacheistaya topologiya seti Zigbee [Zigbee Mesh Network Topology],
Sovremennye tekhnologii v mirovom nauchnom prostranstve: Sb. statey [Modern technologies
in the world scientific space: Collection of articles]. Ufa, 2017, pp. 78-80.
5. Park P., Di Marco P., Soldati P., Fischione C., Johansson K.H. A Generalized Markov Chain
Model for Effective Analysis of Slotted IEEE 802.15.4, Mobile Adhoc and Sensor Systems,
IEEE 6th International Conference, Macau, 2013, pp. 130-139.
6. Popkov G.V. Mesh–seti: perspektivy razvitiya, vozmozhnye primeneniya [Mesh networks:
development prospects, possible applications], Vychislitel'nye i setevye resursy [Computing
and network resources]. Novosibirsk, 2012, pp. 74-79.
7. Vishnevskiy V.V., Portnoy S.L., Shakhnovich I.V. Entsiklopediya Wi-Max. Put' k 4G [Wi-Max
Encyclopedia. The path to 4G]. Tekhnosfera, 2010.
8. Olifer V.G., Olifer N.A. Komp'yuternye seti. Printsipy, tekhnologii, protokoly [Computer networks.
Principles, technologies, protocols]. Sankt-Peterburg, 2016, 992 p.
9. Pluzhnikov A.A. Marshrutizatsiya v besprovodnykh Ad-hoc setyakh, osnovannaya na
topologicheskikh svoystvakh seti [Routing in wireless Ad-hoc networks based on network
topological properties], Metody i ustroystva peredachi i obrabotki informatsii [Methods and
devices for transmitting and processing information], 2015, pp. 164-169.
10. Hongwei Li, Zhongning Jia; Xiaofeng Xue. Application and Analysis of ZigBee Security Services
Specification, Second International Conference on Networks Security, Wireless Communications
and Trusted Computing, China, 2010.
11. Muthu Ramya C., Shanmugaraj M., Prabakaran R. Study on ZigBee technology, 3rd International
Conference on Electronics Computer Technology, India, 2011.
12. Shabliy G.F., Anipko O.B. Obespechenie ekologicheskoy bezopasnosti ot potentsial'no opasnykh
sudov s ispol'zovaniem sistemy monitoringa sudokhodstva [Ensuring environmental safety from potentially
dangerous vessels using the navigation monitoring system], Sistemy upravleniya i
obrabotki informatsi [Information management and processing systems], 2015, pp. 92-94.
13. Mudrov A.A., Kemaykin V.K. Metodika obrabotki otrazhennogo radiolokatsionnogo signala v
interesakh raspoznavaniya tseli tipa kvadrokopter [The technique of processing the reflected
radar signal in the interests of recognizing a quadrocopter-type target], Vserossiyskaya
nauchno-prakticheskaya konferentsiya TvGTU [All-Russian Scientific and Practical Conference
of TvSTU, 2019], pp. 78-80.
14. Bezopasnost' setey 802.11 – osnovnye ugrozy. Khabr. 2012 [The security of 802.11 networks
are the main threats. Habr. 2012]. Available at: https://habr.com/ru/post/151126/ (accessed
05 March 2021).
15. Standart IEEE 802.15.4z. Khabr. 2019 [IEEE 802.15.4z standard. Habr. 2019]. Available at:
https://habr.com/ru/post/457876/ (accessed 06 March 2021).
16. Yakhiev I.D. Klient-servernaya sistema na osnove besprovodnoy seti standarta IEEE 802.15.4
[Client-server system based on IEEE 802.15.4 wireless network], Natsional'nyy
issledovatel'skiy universitet «Vysshaya shkola ekonomiki» [National Research University
Higher School of Economics], 2014, pp. 1-21.
17. Protokoly byvayut raznye... BACnet. 2017 [Protocols are different... BACnet. 2017]. Available
at: http://www.bacnet.ru/knowledge-base/articles/index.php?ELEMENT_ID=746 (accessed
19 February 2021).
18. Zhukov M.O., Ivanov A.E., Merkulov I.V., Narymskiy B.V. Ispol'zovanie setey standarta IEEE
802.15.4/ZigBee v sistemakh shakhtnoy avtomatizatsii [The use of IEEE 802.15.4/ZigBee
standard networks in mine automation systems], Informatsionnye tekhnologii v upravlenii
tekhnicheskimi sistemami i tekhnologicheskimi protsessami [Information technologies in the
management of technical systems and technological processes], 2012, pp. 42-46.
19. Zatsepin E.S. Kharakteristiki protokolov v mesh-setyakh [Characteristics of protocols in mesh
networks], Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, optimization
and information technology], 2015, No. 1, pp. 11-11.
20. Pysarenko V., Gulchak O., Pisarenko J. Technology for Improve the Safety of Ships from
Methane Emissions Using UAVs ,International Conference on Methods and Systems of Navigation
and Motion Control (MSNMC). 2020.
Published
2021-12-24
Section
SECTION I. MODELING OF PROCESSES AND SYSTEMS