DESIGN OF AN ANTENNA SYSTEM FOR A KU-BAND MIMO RADAR

  • Y.M. Meleshin Institute of Microdevices and Control Systems
  • V.I. Oreshkin Institute of Microdevices and Control Systems
  • K. S. Lyalin Institute of Microdevices and Control Systems
Keywords: Antennas, MIMO radar, turnstile emitter, spatial signal attenuation

Abstract

There is a large amount of research and development of continuous MIMO radars. The development
process of the antenna aperture for MIMO radars is different from the development of
traditional antenna arrays. The use of mutually orthogonal signals on the transmitting elements in
combination with the digitization of all receiving channels allows to form a virtual antenna array
by repeating the receiving antenna array at the locations of the transmitting antenna elements,
which significantly improves the angular resolution, and makes it possible to get rid of side lobes.
It is necessary to provide a high level of spatial attenuation of the signal between all of the transmitting
and all of the receiving elements, to enable continuous mode of operation, so that there isno oversaturation of the receiving paths. In this paper, the process of developing an antenna aperture
for a Ku-band MIMO radar is considered, including the following steps: calculating the requirements
for spatial attenuation between antenna elements, optimization of antenna elements
relative coordinates, electromagnetic simulation of: a single emitter, spatial attenuation of signals,
and the resulting characteristics of antenna elements. As a result of the selection and optimization
of the receiving and transmitting antenna elements relative coordinates, a structure of 32 transmitting
and 16 receiving elements was designed with spatial dimensions of 30 by 19 cm. The formed
virtual antenna array consists of 512 elements with effective spatial dimensions of 19 by 38 cm.
These results promise the sector of operation of ±60 degrees in both planes and potential resolution
of no more than 1.5 by 3 degrees (azimuth and elevation, respectively).Calculation and electromagnetic
simulation of spatial signal attenuation between transmitting and receiving antenna
elements showed that the designed antenna array configuration allows obtaining an attenuation of
66 dB, which is consistent with the design requirements.

References

1. Chernyak V.S. On a new direction in radar: MIMO radar, Applied Radioelectronics, 2009,
Vol. 8, No. 4, pp. 477-489.
2. Simon Kueppers, Harun Cetinkaya, Reinhold Herschel, Nils Pohl. A Compact 24 × 24 Channel
MIMO FMCW Radar System Using a Substrate Integrated Waveguide-Based Reference
Distribution Backplane, Microwave Theory and Techniques IEEE Transactions on, 2020,
Vol. 68, No. 6, pp. 2124-2133.
3. Sit Y.L., Li G., Manchala S., Afrasiabi H., Sturm C. and Lübbert U. BPSK-based MIMO
FMCW Automotive-Radar Concept for 3D Position Measurement, Radar Conference
(EuRAD) 2018. European, 2018.
4. Kryuchkov I.V., Slukin G.P., Chapurskiy V.V. Prostranstvenno-vremennaya obrabotka signalov
na vykhode MIMO antennoy sistemy s uchetom pereotrazheniy ot zemnoy poverkhnosti
[Spatio-temporal signal processing at the MIMO output of an antenna system taking into account
re-reflections from the Earth's surface], SVCh-tekhnika i telekommunikatsionnye
tekhnologii [Microwave equipment and telecommunications technologies], 2020, No. 1-1,
pp. 531-532.
5. Chapurskiy V.V., Filatov A.A., Vodolazov R.V. K voprosu o vybore sistemy koordinat pri
postroenii prostranstvennoy obobshchennoy funktsii neopredelennosti dlya radiolokatsionnykh
sistem tipa MIMO [On the question of choosing a coordinate system when constructing
a spatial generalized uncertainty function for radio-location systems of the MIMO
type], SVCh-tekhnika i telekommunikatsionnye tekhnologii [Microwave equipment and telecommunications
technologies], 2020, No. 1-1, pp. 533-534.
6. Chapurskiy V.V., Slukin G.P., Noniashvili M.I., Lesnikov G.A. Razreshayushchaya sposobnost'
i radioizobrazheniya statsionarnykh ob"ektov v nazemnykh MIMO-radiokamerakh [Resolution
and radio images of stationary objects in ground-based MIMO-radio cameras], Vestnik MGTU
im. N.E. Baumana. Seriya “Priborostroenie” [Bulletin of the Bauman Moscow State Technical
University. Series “Instrument making”], 2019, No. 3 (126), pp. 77-94. Doi:
10.18698/0236-3933-2019-3-77-94.
7. Liu Y., Liao G. and Yang Z. Range and angle estimation for MIMO-OFDM integrated radar
and communication systems, 2016 CIE International Conference on Radar (RADAR), 2016,
pp. 1-4. Doi: 10.1109/RADAR.2016.8059539.
8. Touati N. et al. High Angle Resolution Automotive Radar Based on Simultaneous 12Tx Doppler-
Multiplex MIMO, 2020 17th European Radar Conference (EuRAD), 2021, pp. 386-389.
Doi: 10.1109/EuRAD48048.2021.00105.
9. Charles E. Cook Marvin Bernfeld. Radar signals. An introduction to theory and application.
Academic press, inc. (London) LTD, 1967.
10. Lobach V.T., Kas'yanov A.O., Potipak M.V. [i dr.]. Posledovatel'nyy sposob formirovaniya
kanalov MIMO pri izmerenii parametrov radiolokatsionnykh ob"ektov [A sequential method for
forming MIMO channels when measuring the parameters of radar objects], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 11 (172), pp. 213-224.
11. Zaytsev N.A., Makaretskiy E.A. Analiz napravlennykh svoystv antennykh reshetok MIMO
RLS [Analysis of directional properties of MIMO radar antenna arrays], Izvestiya TulGU.
Tekhnicheskie nauki [News of TulSU. Technical sciences], 2016, No. 12-2, pp. 111-121.
12. Chapurskiy V.V. Poluchenie radiogolograficheskikh izobrazheniy ob"ektov na osnove
razrezhennykh antennykh reshetok tipa MIMO s odnochastotnym i mnogochastotnym
izlucheniem [Obtaining radiographic images of objects based on sparse MIMO-type antenna
arrays with single-frequency and multi-frequency radiation], Vestnik MGTU im.
N.E. Baumana. Seriya «Priborostroenie» [Bulletin of the Bauman Moscow State Technical
University. Series “Instrument making”], 2011, No. 4 (85), pp. 72-91.
13. Hassanien A. and Vorobyov S.A. Why the phased-MIMO radar outperforms the phased-array
and MIMO radars, 2010 18th European Signal Processing Conference, Aalborg, Denmark,
2010, pp. 1234-1238.
14. Meleshin Y.M., Romanova E.O., Zatonskaya A.A., Kuzmin I.A. and Airapetian A.A. Optimization
of the Arrangement of Antenna Elements of the Ku-band MIMO Radar, 2021 IEEE Conference
of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus),
2021, pp. 2541-2543. Doi: 10.1109/ElConRus51938.2021.9396418.
15. Zheng Shenghua, Xu Dazhuan and Jin Xueming. ADC limitations on the dynamic range of a
digital receiver, 2005 IEEE International Symposium on Microwave, Antenna, Propagation
and EMC Technologies for Wireless Communications, 2005, Vol. 1, pp. 79-82. Doi:
10.1109/MAPE.2005.1617852.
16. Tangelder R.J.W.T., H. de Vries, Rosing R., Kerkhoff H.G. and Sachdev M. Jitter and
decision-level noise separation in A/D converters, IMTC/99. Proceedings of the 16th
IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309),
1999, Vol. 3, pp. 1558-1562. Doi: 10.1109/IMTC.1999.776087.
17. Jianhua Liu, Xiyuan Zhou and Yingning Peng. Spectral arrangement and other topics in firstorder
bandpass sampling theory, in IEEE Transactions on Signal Processing, June 2001,
Vol. 49, No. 6, pp. 1260-1263. Doi: 10.1109/78.923308.
18. Efimov A.G., Korneev S.A., Matveev V.S., Chistyukhin V.V. Proektirovanie mnogoluchevoy
priemo-peredayushchey apertury nizkoorbital'noy kosmicheskoy sistemy svyazi [Designing a
multipath receiving-transmitting aperture of a low-orbit space communication system],
Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [News of higher educational institutions.
Electronics], 2021, Vol. 26, No. 1, pp. 64-73.
19. Moskovskiy A.V., Osokin V.A. Patent № 2728729 C1 Rossiyskaya Federatsiya, MPK H01Q
21/26. Turniketnaya antenna s malogabaritnym kvadraturnym delitelem moshchnosti [Turnstile
antenna with a small-sized quadrature power divider]: No. 2019119473: appl.:
20.06.2019; publ. 30.07.2020; applicant: CJSC "MNITI.
20. Chistyukhin V.V., Lyalin K.S., Oreshkin V.I. [i dr.]. Proektirovanie izluchayushchey apertury
AFAR samoletnoy RLS perednego obzora dlya sistemy navedeniya i posadki v
avtomaticheskom rezhime [Designing of the radiating aperture of the AFAR of the forwardlooking
aircraft radar for the guidance and landing system in automatic mode], Izvestiya
vysshikh uchebnykh zavedeniy. Elektronika [News of higher educational institutions. Electronics],
2015, Vol. 20, No. 5, pp. 530-535.
Published
2021-08-11
Section
SECTION III. COMMUNICATION, NAVIGATION AND RADAR