DEVELOPMENT OF METHODS OF OPTIMIZATION AND PARALLELIZATION OF COMPUTATIONAL PROCESSES IN QUANTUM ACCELERATORS

  • S. M. Gushanskiy Southern Federal University
  • V. S. Potapov Southern Federal University
  • V.I. Bozhich Southern Federal University
Keywords: Modeling, quantum algorithm, qubit, model of a quantum computer, entanglement, superposition, quantum operator, complexity of the algorithm

Abstract

Recently, there has been a rapid increase in interest in quantum computers. Their work is
based on the use of quantum-mechanical phenomena such as superposition and entanglement for
computing to transform input data into outputs that can actually provide effective performance
3–4 orders of magnitude higher than any modern computing devices, which will allow solving theabove and others. tasks in real- and accelerated-time scale. This article is devoted to solving the
problem of research and development of methods for optimizing quantum computing within the
framework of the application of quantum accelerators. A block diagram of a hardware accelerator
is proposed to increase the performance of simulated quantum computing. The development of the
structural diagram of the communication module of the hardware accelerator and the software
model was carried out. The relevance of these studies lies in mathematical and software modeling
and implementation of correction codes for correcting several types of quantum errors in the development
and implementation of quantum algorithms for solving classes of problems of a classical
nature. The scientific novelty of this direction is expressed in the elimination of one of the disadvantages
of the quantum computational process. The scientific novelty of this area is primarily
expressed in the constant updating and supplementation of the field of quantum research in a
number of areas, and the computer simulation of quantum physical phenomena and features is
poorly covered in the world.

References

1. Kvantovaya kriptografiya [Quantum cryptography], Vikipediya [Wikipedia]. Available at:
http://ru.wikipedia.org/?oldid=82377595 (accessed 07 March 2021).
2. Trubitsyn A.A. Raschet traektorii dvizheniya material'noy tochki v dvumernom
(osesimmetrichnom) konservativnom pole [Calculation of the trajectory of a material point in a
two-dimensional (axisymmetric) conservative field], Zhurnal vychislitel'noy matematiki i
matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics],
1990, Vol. 30, No. 7, pp. 1113-1115.
3. Arthur Trew (ed.), Greg Wilson (ed.). Past, Present, Parallel: A Survey of Available Parallel
Computer Systems. Springer, 1991, 392 p. ISBN 9783540196648.
4. Quantum phase estimation algorithm. (2020, Nov 03). In Wikipedia, The Free Encyclopedia.
Retrieved 05:15, July 27, 2020, from https://en.wikipedia.org/ w/index.php?Title=Quantum
_phase_estimation_algorithm&oldid=731732789.
5. Richard G., Milner A. Short History of Spin, Contribution to the XV International Workshop
on Polarized Sources, Targets, and Polarimetry. Charlottesville, Virginia, USA, September
9-13, 2013. arXiv:1311.5016.
6. Gushanskiy S.M., Potapov V.S. Metodika razrabotki i postroeniya kvantovykh algoritmov
[Methods of development and construction of quantum algorithms], Informatizatsiya i svyaz'
[Informatization and communication], 2017, No. 3, pp. 101-104.
7. Gushanskiy S.M., Polenov M.Yu., Potapov V.S. Realizatsiya komp'yuternogo modelirovaniya
sistemy s chastitsey v odnomernom i dvukhmernom prostranstve na kvantovom urovne [Implementation
of computer modeling of a system with a particle in one-dimensional and twodimensional
space at the quantum level], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2017, No. 3, pp. 223-233.
8. Gushanskiy S.M., Polenov M.Yu., Potapov V.S. Realizatsiya komp'yuternogo modelirovaniya
sistemy s chastitsey v odnomernom i dvukhmernom prostranstve na kvantovom urovne [Implementation
of computer modeling of a system with a particle in one-dimensional and twodimensional
space at the quantum level], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2017, No. 3, pp. 223-233.
9. Hales S. Hallgren. An improved quantum Fourier transform algorithm and applications, Proceedings
of the 41st Annual Symposium on Foundations of Computer Science. November 12–
14 2000, 515 p.
10. Potapov V., Gushanskiy S., Polenov M. The Methodology of Implementation and Simulation
of Quantum Algorithms and Processes, 2017 11th International Conference on Application of
Information and Communication Technologies (AICT). Institute of Electrical and Electronics
Engineers, 2017, pp. 437-441.
11. Ofer Firstenberg, Mikhail D. Lukin. Attractive photons in a quantum nonlinear medium,
Nature, October 2013, Vol. 502.
12. Nil'sen M., Chang I. Kvantovye vychisleniya i kvantovaya informatsiya = Quantum Computation
and Quantum Information [Quantum computing and quantum Information = Quantum
Computing and Quantum Information]. Moscow: Mir, 2006.
13. Quantum programming. (2016, Nov 03). In Wikipedia, The Free Encyclopedia. Retrieved
17:50, September 20, 2016, from https://en.wikipedia.org/w/index. php?title=Quantum
_programming&oldid=740376291.
14. Wikipedia contributors. (2018, November 27). IBM Q Experience. In Wikipedia, The Free
Encyclopedia. Retrieved 17:28, January 31, 2019, from https://en.wikipedia.org/w/index.php
?title=IBM_Q_Experience&oldid=8708780.
15. Quantum mechanics. (2017, March 29). In Wikipedia, The Free Encyclopedia. Retrieved
15:50, March 30, 2017. Available at: https://en.wikipedia.org/w/index. php?title=Quantum_
mechanics&oldid=772744105.
16. Boneh D., Zhandry M. Quantum-secure message authentication codes, In Proceedings of
Eurocrypt, 2013, pp. 592-608,
17. Chris Ferrie. Quantum Physics for Babies. Brdbk edition. Sourcebooks Jabberwocky,
2017-05-02, pp. 23, 24 p. ISBN 9781492656227.
18. Wilde M. From Classical to Quantum Shannon Theory, arXiv:1106.1445.
19. Guzik V.F., Gushanskiy S.M., Potapov V.S. Kolichestvennye kharakteristiki stepeni
zaputannosti [Quantitative characteristics of the degree of entanglement], Izvestiya
YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 3, pp. 76-86.
20. Potapov V., Gushansky S., Guzik V., Polenov M. Architecture and Software Implementation of
a Quantum Computer Model, Advances in Intelligent Systems and Computing. Springer
Verlag, 2016, Vol. 465, pp. 59-68.
21. Tomas Kh. Kormen, Charl'z I. Leyzerson, Ronal'd L. Rivest, Klifford Shtayn. Algoritmy:
postroenie i analiz = Introduction to Algorithms [Algorithms: construction and analysis = Introduction
to Algorithms]. 2nd ed. Moscow: Vil'yams, 2006, 1296 p. ISBN 0-07-013151-1.
22. Optimizatsiya [Optimization], Vikipediya [2018–2018], [Wikipedia [2018-2018]. Available at:
https://ru.wikipedia.org/?oldid=94448419 (accessed 10 August 2018).
23. Bennett С.H., Shor P.W., Smolin J.A., Thapliyal A.V. Entanglement-assisted Capacity of a
Quantum Channel and the Reverse Shannon Theorem, IEEE Transactions on Information
Theory, 2002, Vol. 48, pp. 26-37.
24. Kleppner D., Kolenkow R. An Introduction to Mechanics (Second ed.). Cambridge: Cambridge
University Press, 2014, 49 p.
25. Potapov V.S., Gushanskiy S.M. Kvantovye tipy oshibok i metody ikh ustraneniya, zavisimost'
oshibki ot mery i chistoty zaputannosti [Quantum types of errors and methods of their
elimination, the dependence of error on the measure and purity of entanglement], Sb.
trudov XIV Vserossiyskoy nauchnoy konferentsii molodykh uchenykh, aspirantov i studentov
ITSAiU-2016 [Proceedings of the XIV All-Russian Scientific Conference of young
scientists, postgraduates and students of ITSAiU-2016]. Rostov-on-Don: Izd-vo YUFU,
2016, Vol. 3, pp. 123-129.
Published
2021-08-11
Section
SECTION I. INFORMATION PROCESSING ALGORITHMS