RESEARCH OF ELECTROMECHANICAL TRANSDUCER’S FASTENING INFLUENCE TO THE ACCELERATION PIEZOSENSOR’S CHARACTERISTICS

  • V.V. Yanchich Southern Federal University
Keywords: Piezosensor, electromechanical transducer, mathematical model, fastening, acceleration, vibration, deformation

Abstract

The research is carried out to obtain data necessary to improve calculation accuracy and
for construction optimization in piezosensors of mechanical values. These sensors are widely used
for control, monitoring and diagnostics of complex equipment and engineering structures. The
task of the research is to study the features of working deformations in electromechanical
piezotransducer in area of fastening to sensor base and to estimate their influence to the main
metrological characteristics. The object of the research is electromechanical transducer in the
form of cylindrical monolithic block made of piezoelectric ceramics with height-to-diameter ratio
0.33 to 2. This transducer is fixed on the sensor’s base which is affected by progressive acceleration
of vibration oscillations from the controlled object. Using the ANSYS Multiphysics softwarepackage a mathematical model of the transducer with two fundamentally different types of fastening
 “free sliding” and “rigid”  has been investigated. At the same time the mechanism of
transverse mechanical shunting of transducer’s deformation in limit region of the rigid fastening
was revealed. “Fastening effect coefficient” and its determination formula for various transducer’s
height-to-diameter ratios are proposed for quantitative estimate of fastening conditions influence
to transducer’s characteristics. Taking into account the properties of structural materials
used in practice and the most frequently used elastic compression of elements a method was developed
and experimental studies were carried out to determine the effect of transducer’s fastening in
real sensor designs. It was found that base material properties and transducer dimensions ratio in
real sensor design can cause changes in voltage conversion coefficient up to 15%, the charge
conversion coefficient up to 22%, electric capacity up to 9% and longitudinal resonance frequency
up to 16%. The influence of boundary fastening conditions decreases simultaneously with the increase
of transducer’s relative height. The calculating data were obtained experimentally for the
fastening effect coefficient when making the sensor’s base of metals with elastic modulus of
74300 GPa and density of 270017700 kg/m3. The results of research carried out can be taken
into account when designing piezosensors of mechanical values.

References

1. Datchiki dlya izmereniya, kontrolya, diagnostiki i upravleniya fizicheskikh i
tekhnologicheskikh protsessov: spravochnik: v 2 t. [Sensors for measurument, control, diagnostics
and management of physical and technological processes: handbook in 2 vol.], under
the general ed. A.V. Gorisha, ed. by A.G. Dmitrienko, A.N. Kotova, Yu.N. Makarova,
S.A. Ponomareva. Vol. 1. B. 1. Moscow: FGBOU VPO MGUL, 2012, 576 p.
2. Crocker M.J., Arenas J.P. Engineering Acoustics: Noise and Vibration Control. Springer,
2012, 706 p.
3. Kostyukov V.N., Naumenko A.P. Osnovy vibroakusticheskoy diagnostiki i monitoringa mashin
[Basics of vibroacoustic diagnostics and monitoring of the machines: tutorial]. Omsk:
OmGTU, 2011, 360 p.
4. Mokrov E.A. Sostoyanie, problemy i puti razvitiya datchikostroeniya [Condition, problems and
development ways of sensor engineering], Datchiki i sistemy – 2006: Sb. trudov Vserossiyskoy
nauchno-prakticheskoy konferentsii (Moskva, 30–31 maya 2006 g.) [Sensors and Systems-
2006: Proceedings of the All-Russian Scientific and Practical Conference (Moscow, May 30-
31, 2006). Penza: FNPTS FGUP «NII fizicheskikh izmereniy», 2006, pp. 6-14.
5. Gorish A.V., Panich A.E., Svirskaya S.N., Yanchich V.V. Perspektivy razvitiya
p'ezoelektricheskikh datchikov mekhanicheskikh velichin dlya RKT i drugikh oblastey [The
development prospects of piezosensors of mechanical values for rocket and space technique
and other fields], Sb. tr. nauch.-tekhn. konf. «Informatsionno-izmeritel'naya tekhnika» [Proceedings
of the scientific and technical conference "Information and Measurement Technology"].
Moscow: RUND, 2014, pp. 282-293.
6. Bogush M.V. Proektirovanie p'ezoelektricheskikh datchikov na osnove prostranstvennykh
elektrouprugikh modeley. (P'ezoelektricheskoe priborostroenie T. IX.) [Design of piezoelectric
sensors based on spatial electroelastic models. (Piezoelectric instrument making Vol. IX)].
Moscow: Tekhnosfera, 2014, 312 p.
7. Yanchich V.V., Panich A.E. Dvukhparametrovyy p'ezoelektricheskiy datchik postupatel'nogo i
uglovogo uskoreniya [Two-parameter piezoelectric sensor of progressive and angular acceleration],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016,
No. 2, pp. 191-199.
8. Yanchich V.V., Yanchich Vl.V. Preobrazovateli p'ezoelektricheskikh datchikov
mekhanicheskikh velichin (konstruktsii i puti razvitiya) [The transducers of mechanical values
piezosensors (constructions and development ways)]. Saarbrucken, Deutschland: LAP, 2013,
142 p.
9. Serridge M., Licht T.R. Piezoelectric accelerometers and vibration preamplifiers: theory and
application handbook. Nerum, Denmark: Brüel and Kjær, 1987, 150 p.
10. Levinzon F. Piezoelectics Accelerometers with Integral Electrronics. NYC: Springer, 2015,
168 p.
11. Mit'ko V.N., Kramarov Yu.A., Panich A.A. Matematicheskoe modelirovanie fizicheskikh
protsessov v p'ezoelektricheskom priborostroenii. (P'ezoelektricheskoe priborostroenie. T. 6)
[Mathematical modeling of physical processes in piezoelectric instrumentation. (Piezoelectric
instrumentation. Vol. 6). Rostov-on-Don: Izd-vo YuFU, 2009, 240 p.
12. Yanchich Vl.V., Mit'ko V.N. Issledovanie mekhanicheskikh napryazheniy i elektricheskikh
poley v p'ezoelektricheskom preobrazovatele akselerometra metodom konechnykh elementov
[The research of mechanical stresses and electric fields in piezosensor of accelerometer by the
final elements method], Sb. tez. VIII Vseros. nauch.-tekhn. konf. «Aktual'nye problemy
p'ezoelektricheskogo priborostroeniya» [Digest of theses of the VIII All-Russian scientific and
technological conference «The piezoelectric instrumentation actual problems»]. Rostov-on-
Don: Izd-vo YuFU, 2012, pp. 50-54.
13. Han-Chin Wu. Continuum Mechanics and Plasticity. Taylor & Francis, 2004, 704 p.
14. Yanchich V.V. P'ezoelektricheskie vibroizmeritel'nye preobrazovateli (akselerometry).
(P'ezoelektricheskoe priborostroenie. T. 7) [Piezoelectric vibration measuring transducers (accelerometers).
(Piezoelectric instrument making. Vol. 7). Rostov-on-Don: Izd-vo YuFU,
2010, 304 p.
15. Liu B., Tcherniak D., Jacobson N., Olsen M. Smart Setap and Accelerometer Mounting Check
for Vibration Measurements, Sensors and Instrumentation. Proceedings of the 34th IMAC,
A Conference and Exposition on Structural Dynamics, 2016, Vol. 5, pp. 9-34.
16. Veber M. Piezoelektrische Beschleuningungs aufnehmer. MFF, 2012, 55 p.
17. Acoustic and vibration transducers. Reliability and precision based on superior technology.
Denmark: Brüel & Kjær. 1996, 60 p.
18. Panich A.E., Topolov V.Yu. Fizika segneto- i p'ezoelektrikov [Physics of ferroelectrics and
piezoelectrics]. Rostov-on-Don: Izd-vo YuFU, 2009, 171 p.
19. A.s. SU 1103161. Ustroystvo dlya izmereniya prodol'nogo p'ezomodulya [Patent SU 1103161.
Ustroystvo dlya izmereniya prodolnogo piezomodulya [Longitudinal piezomodule],
V.K. Dolya, O.P. Kramarov, Yu.A. Kramarov. 1984, bull. No. 26.
20. Robert M. Jones. Deformation Theory of Plasticity. Bull Ridge Publ, 2009, 621 p.
Published
2021-07-18
Section
SECTION III. MODELING OF PROCESSES AND SYSTEMS