DEVELOPMENT AND RESEARCH OF THE METHOD OF VECTOR ANALYSIS OF EMG OF THE FOREARM FOR CONSTRUCTION OF HUMAN-MACHINE INTERFACES
Abstract
The paper deals with the problems of increasing the depth and increasing the long-term stability
of communication channels in human-machine interfaces, built on the basis of data on the
electrical activity of the forearm muscles. A possible solution is to use the method of analysis of
electromyogram (EMG) signals, which combines vector and command control. In view of the possibility
of random displacement of the position of the electrodes during operation, a mathematical
model was built for vector analysis of EMG in spherical coordinates, which is invariant to the
spatial arrangement of the electrodes on the forearm. Command control is based on gesture
recognition by means of a pretrained artificial neural network (ANN). Vector control consists in
solving the problem of calibrating the channels of EMG sensors according to the spatial arrangement
of the electrodes and calculating the resulting vector of muscle forces used as an additional
information channel to set the direction of movement of the operating point of the control object.
The proposed method has been tested on actually recorded EMG signals. The influence of the
duration of the processed signal fragments on the process of extracting information about the
rotational movement of the hand was investigated. Since the change in the position of the electrodes
between operating sessions is different, an algorithm for reassigning and calibrating the
amplification of the EMG channels is presented, which makes it possible to use a once trained
ANN for recognition and classification of gestures in the future. Practical application of the results
of the work is possible in the development of algorithms for calibration, gesture recognition
and control of technical objects based on electromyographic human-machine interfaces.
References
243 p.
2. Budko N.A., Budko R. Yu., Budko A.Yu. Primenenie iskusstvennykh neyronnykh setey v
interfeysakh chelovek–mashina [Application of artificial neural networks in human-machine
interfaces], Modelirovanie, optimizatsiya i informatsionnye tekhnologii [Modeling, Optimization
and Information Technologies], 2019, Vol. 7, No. 1. Available at: http://moit.vivt.ru/.
3. Budko R.Yu., Chernov N.N., Budko N.A., Budko A.Yu. Raspoznavanie elektromiogrammy
predplech'ya i vybor zhestov dlya upravleniya protezom [Recognition of the forearm electromyogram
and selection of gestures for controlling the prosthesis], Modelirovanie,
optimizatsiya i informatsionnye tekhnologii [Modeling, optimization, and information technology],
2019, Vol. 7, No. 1. Available at: http://moit.vivt.ru/.
4. Budko R.Yu., Chernov N.N., Budko N.A. Issledovanie metodov klassifikatsii EMG v zadache
upravleniya zhestami ruki [Research of methods of classification of EMG in the control of hand gestures],
Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [News of higher educational
institutions. Instrumentation], 2019. Doi 10.17586/0021-3454-2019-62-12-1098-1104.
5. Budko R.Yu., Chernov N.N., Budko N.A. Metod upravleniya ustroystvami zameshcheniya utraennykh
funktsiy na osnove miosignala i ego verifikatsiya v real'nom masshtabe vremeni
[A method for controlling devices for replacing lost functions based on the miosignal and its
verification in real time], Vestnik molodezhnoy nauki Rossii [Bulletin of Youth Science of
Russia], 2019, Issue No. 6.
6. Slavutskiy Ya.L. Fiziologicheskie aspekty bioelektricheskogo upravleniya protezami [Physiological
aspects of bioelectric control of prostheses]. Moscow: Meditsina, 1982, 288 p.
7. Burov G.N. Sovremennoe sostoyanie problemy upravleniya protezami verkhnikh
konechnostey i dostigaemyy effekt protezirovaniya [Current state of the problem of management
of upper limb prostheses and the achieved effect of prosthetics], Vestnik gil'dii
protezistov-ortopedov [Bulletin of the Guild of Prosthetics and Orthopedists], 2002, No. 4
(10), pp. 37-43.
8. Federal'naya gosudarstvennaya informatsionnaya sistema. Federal'nyy reestr invalidov [Federal
State Information System. Federal Register of Disabled Persons]. Available at:
https://sfri.ru/analitika/chislennost (accessed 01 December 20).
9. Person R.S. Elektromiografiya v issledovaniyakh cheloveka [Electromyography in human
research]. Moscow: Nauka, 1969, 231 p.
10. Resnik L. Development and testing of new upper-limb prosthetic devices: research designs for
usability testing, J. Rehabil. Res. Dev., 2011, Vol. 48, No. 6, pp. 697-706.
11. Farber B.S., Vitenzon A.S. Teoreticheskie osnovy postroeniya protezov nizhnikh konechnostey
i korrektsii dvizheniya [Theoretical foundations of the construction of lower limb prostheses
and motion correction]. Moscow: TSNIIPP, 1994, 645 p.
12. Vigreuх B., Cnockart J.C., Pertuzon E. Factors influenced quantified surface EMG, Journal
Applied Physiology, 1979, Vol. 41, No. 4, pp. 119-129.
13. Ogiri Y. Development of an upper limb neuroprosthesis to voluntarily control elbow and hand,
Proc. 26th IEEE Int. Symposium on Robot and Human Interactive Communication (RO-MAN).
Lisbon, Portugal, 2017, pp. 298-303. Doi: 10.1109/ROMAN.2017.8172317.
14. Yusevich Yu.S. Ocherki po klinicheskoy elektromiografii [Essays on clinical electromyography].
Moscow: Meditsina, 1972, 187 p.
15. Kouen Kh., Brumlik Dzh. Rukovodstvo po elektromiografii i elektrodiagnostike [Manual of
electromyography and electrodiagnostics]. Moscow: Meditsina, 1975, 358 p.
16. Kondrashin N.I., Sanin V.G. Amputatsiya konechnostey i pervichnoe protezirovanie [Amputation
of limbs and primary prosthetics]. Moscow: Meditsina, 1984, 160 p.
17. Ivanovskiy Yu.V. Printsipy ispol'zovaniya metoda biologicheskoy obratnoy svyazi v sisteme meditsinskoy
reabilitatsii [Principles of using the method of biological feedback in the system of medical rehabilitation],
Biologicheskaya obratnaya svyaz' [Biological feedback], 2000, No. 3, pp. 2-9.
18. Kunel'skaya N.L. Metod biologicheskoy obratnoy svyazi v klinicheskoy praktike [Method of biological
feedback in clinical practice], Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova [Journal of
Neurology and Psychiatry named after S. S. Korsakov], 2014, No. 114 (8), pp. 46-50.
19. Rosenberg, R. The biofeedback pointer: EMG control of a two-dimensional pointer, Wearable
Computers, Digest of Papers. Second International Symposium on 19-20 Oct. 1998, pp. 162-163.
20. Tavakoli M. Robust hand gesture recognition with a double channel surface EMG wearable
armband and SVM classifier, Biomedical Signal Processing and Control, 2018, No. 46,
pp. 121-130. Doi:10.1016/j.bspc.2018.07.010.