THE METHOD OF ESTIMATION POSITIONS OF THE UAVS BY MEASURING THE DISTANCES BETWEEN ELEMENTS OF THE GROUP

  • V.A. Kostjukov R&D Institute of Robotics and Control Systems
  • E.Y. Kosenko Southern Federal University
  • M.Y. Medvedev Southern Federal University
  • V.K. Pshikhopov Southern Federal University
  • M.V. Mamchenko Southern Federal University
Keywords: UAVs group, group navigation, autonomous navigation, estimation of position

Abstract

Important problems in the development of mobile robotics are the task of autonomous navigation,
automatic movement control and providing a reliable communication channel. For navigation,
an unmanned aerial vehicle can use its own inertial navigation system and a satellite navigation
system. The purpose of this article is to develop a method for reducing errors in the operation
of the inertial navigation system of UAVs caused by the presence of random and systematic errors.
In this case, we consider the situation of a monotonous increase in the systematic error over time.
Usually, navigation data obtained from the satellite does not contain a significant systematic error
in determining the coordinates. However, the satellite signal may be lost for a time significantly
longer than the period of transmission of navigation data from the satellite in normal mode.
As a result, there is a problem of increasing the accuracy of the data received from the inertial
navigation system. This problem is particularly relevant for group application of UAVs. When
solving group control tasks, it becomes necessary to prevent vehicle collisions and possible collisions
already at the stage of traffic planning. In addition, to solve a number of group tasks, such as
monitoring the terrain, conducting rescue operations, searching for objects in a given area, and
joint cargo transportation, individual objects of the group must move smoothly in space with great
accuracy. This imposes more stringent restrictions on the accuracy of the inertial navigation systems
processing and the frequency of information exchange. In this paper, we propose a method
that allows, based on data obtained from local systems that measure the mutual distances between
objects in a group. This information allows correct the estimates of their own coordinates in such
a way as to reduce the standard deviation of the corrected set of points from the true positions of
objects at a given time. The method also reduces the maximum value of the corresponding deviation
in comparison with the original set of estimates obtained from the navigation data of the INS.
The method is demonstrated by the example of increasing the accuracy of determining global coordinates
in a group of UAVs.

References

1. Veremeenko K.K., Zheltov S.Yu. i dr. Sovremennye informatsionnye tekhnologii v zadachakh
navigatsii i navedeniya bespilotnykh manevrennykh letatel'nykh apparatov [Modern information
technologies in the tasks of navigation and guidance of unmanned maneuverable aircraft],
ed. by M.N. Krasil'shchikova, G.G. Sebryakova. Moscow: Fizmatlit, 2009, 556 p. ISBN
978-59221-1168-3.
2. Layh T., Gebre-Egziabher D. Design for graceful degradation and recovery from GNSS interruptions,
IEEE Aerospace and Electronic Systems Magazine, 2017, Vol. 32 (9), pp. 4-17.
3. Savel'ev V.M., Antonov D.A. Vystavka besplatformennoy inertsial'noy navigatsionnoy sistemy
bespilotnogo letatel'nogo apparata na podvizhnom osnovanii [Tuning of a free-form Inertial
navigation System of an Unmanned aerial Vehicle on a Movable base], Trudy MAI [Transactions
of MAI], 2011, Issue 45.
4. GL-80 – malogabaritnaya oblegchennaya besplatformennaya inertsial'naya navigatsionnaya sistema
(BINS) – girokompas na baze volokonno-opticheskikh giroskopov (VOG) s zamknutym konturom
[GL-80-small-sized lightweight strapdown inertial navigation system (BINS) - gyrocompass based
on fiber-optic gyroscopes (VOG) with a closed loop]. Available at: http://gyrolab.ru/product/gl-80-
volokonno-opticheskiy-gyroscope-inertsialnaya-navigatsionnaya-systema-ins/ (accessed 02
March 2021).
5. Mikhaylov N.V., Chistyakov V.V. Opyt ispol'zovaniya metoda «SoftFlex» v apparature
potrebiteley sputnikovoy navigatsii [Experience of using the "SoftFlex" method in the equipment
of satellite navigation consumers], Giroskopiya i navigatsiya [Gyroscopy and navigation],
2012, No. 4, pp. 105-114.
6. Ferreira R., Gaspar J., Sebastião P. et al. Effective GPS Jamming Techniques for UAVs Using
Low-Cost SDR Platforms, Wireless Perspective Communication, 2020, Vol. 115,
pp. 2705-2727. Available at: https://doi.org/10.1007/s11277-020-07212-6.
7. Bingöl Ö., Güzey H.M. Neuro sliding mode control of quadrotor UAVs carrying suspended
payload, Advanced Robotics, 2021, Vol. 35 (3-4), pp. 255-266.
8. Beloglazov D.A., Gayduk A.R., Kosenko E.Yu., Medvedev M.Yu., Pshikhopov V.Kh., Solov'ev V.V.,
Titov A.E., Finaev V.I., Shapovalov I.O. Gruppovoe upravlenie podvizhnymi ob"ektami v
neopredelennykh sredakh [Group control of mobile objects in undefined environments],ed. by
V.Kh. Pshikhopova. Moscow: Fizmatlit, 2015, 304 p. ISBN 978-5-9221-1674-9.
9. Kendoul F. Survey of advances in guidance, navigation, and control of unmanned rotorcraft
systems, Journal of Field Robotics, 2012, Vol. 29 (2), pp. 315-378. Doi: 10.1002/rob.20414.
10. Pshikhopov V., and Medvedev M. Group control of autonomous robots motion in uncertain
environment via unstable modes, SPIIRAS Proceedings, 2018, Vol. 60 (5), pp. 39-63.
11. Sokolov S.M., Boguslavsky A.A., Vasilyev A.I., Trifonov O.V. Development of software and
hardware of entry-level vision systems for navigation tasks and measuring, Advances in Intelligent
Systems and Computing (Springer), 2013, Vol. 208, pp. 463-476.
12. Zavalishin O.I. Uluchshenie tochnosti navigatsii i posadki s ispol'zovaniem GBASII/III
kategorii [Improved navigation and landing accuracy using GBAS Category II/III],
Informatizatsiya i svyaz' [Informatization and communication], 2017, No. 2, pp. 18-21.
13. Voloshchenko E.V., Voloshchenko V.Yu. Tekhnologii kompleksnoy navigatsii bespilotnykh
gidrosamoletov na akvatorii gidroaerodroma [Technology integrated navigation of unmanned
seaplane on the water with hydro-port], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2020, No. 6 (216), pp. 52-65.
14. Polivanov A.Yu., Ivanov Yu.V., Kholin D.V. Metodika preobrazovaniya koordinat sistemy
tekhnicheskogo zreniya promyshlennogo robota dlya operatsii lazernoy svarki [Method of
transformation of coordinates of the industrial robot's vision system for laser welding operation],
Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2020,
Vol. 21 (3), pp. 166-173. Available at: https://doi.org/10.17587/mau.21.166-173.
15. Sokolov S.M., Beklemishev N.D., Boguslavskiy A.A. Organizatsiya tselenapravlennykh
peremeshcheniy podvizhnykh sredstv s ispol'zovaniem zritel'nykh orientirov [The organization
of purposeful movements of mobile means with the use of visual orientations], Izvestiya
YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2021, No. 1.
16. Mulzer W., Rote G. Minimum-weight triangulation is NP-hard, Proc. of 22nd Annual Symposium
on Computational Geometry, 2006, pp. 1-10.
17. Karkishchenko A.N., Pshikhopov V.Kh. On finding the complexity of an environment for the
operation of a mobile object on a plane, Automation and Remote Control, 2019, Vol. 80 (5),
pp. 897-912.
18. Pshikhopov V.Kh., Medvedev M.Yu., Gayduk A.R., Neydorf R.A., Belyaev V.E., Fedorenko
R.V., Kostyukov V.A., Krukhmalev V.A. Sistema pozitsionno-traektornogo upravleniya
robotizi-ovannoy vozdukhoplavatel'noy platformoy: matematicheskaya model' [The system of
positional-trajectory control of a robotic aeronautical platform: a mathematical model],
Mekhatronika, avtomatizatsiya i upravlenie [Mechatronics, Automation and Control], 2013,
No. 6, pp. 14-21.
19. Byushgens G.S., Studnev R.V. Dinamika samoleta. Prostranstvennoe dvizhenie [Dynamics of
the aircraft. Spatial movement]. Moscow: Mashinostroenie, 1983.
20. Pshikhopov V., Medvedev M. Multi-Loop Adaptive Control of Mobile Objects in Solving Trajectory
Tracking Tasks, Automation and Remote Control, 2020, Vol. 81, No. 11, pp. 2078-2093.
21. Sizov A.V. i dr. Metodika formirovaniya trebovaniy k sisteme korrektsii inertsial'noy
navigatsionnoy sistemy na osnove resheniya mnogoparametricheskoy optimizatsionnoy zadachi
[Methodology of forming requirements for the correction system of an inertial navigation
system based on the solution of a multiparametric optimization problem], Modelirovanie,
optimizatsiya i informatsionnye tekhnologii [Modeling, optimization and Information Technologies],
2018, Vol. 6, No. 4, pp. 381-392.
22. Emel'yantsev G.I., Stepanov A.P., Blazhnov B.A. O reshenii navigatsionnoy zadachi dlya
letatel'nykh apparatov s ispol'zovaniem inertsial'nogo modulya na mikromekhanicheskikh
datchikakh i nazemnykh radioorientirov [On the solution of the navigation problem for aircraft
using an inertial module on micromechanical sensors and ground-based radio orientators],
Giroskopiya i navigatsiya [Gyroscopy and Navigation], 2017, Vol. 2, pp. 3-17.
23. Daftry Sh., Dey D., Sandhawalia H., Zeng S., Bagnell J.A., Hebert M. Semi-Dense Visual
Odometry for Monocular Navigation in Cluttered Environment, Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2015.
Published
2021-04-04
Section
SECTION IV. COMMUNICATION, NAVIGATION, AND HOVER