AIRCRAFT FLIGHT PATH PREDICTION UNDER COMPLETE PARAMETRIC UNCERTAINTY

  • V.V. Kosyanchuk FGUP «State Research Institute of Aviation Systems»
  • V.V. Glasov FGUP «State Research Institute of Aviation Systems»
  • E.Y. Zybin FGUP «State Research Institute of Aviation Systems»
  • Liguo Tan Harbin Institute of Technology
Keywords: Aircraft, flight path prediction, non-parametric method, parametric uncertainty

Abstract

Most of the methods for predicting the behavior of dynamic systems are based on the information
about the parameters of their mathematical models. However, the problems of
nonstationarity, nonlinearity and nonidentifiability of models of real complex systems lead to the
fact that traditional parametric methods are applicable in practice only when the parameters and
structure of models of systems are reliably known, and the uncertainties in the formulation of the
problem are significantly limited. The article describes an original nonparametric method for
predicting the aircraft flight path under absence of a priori information about the parameters of its
mathematical flight dynamics model. The proposed method, unlike similar widely known ones,
does not use logical or statistical calculations and does not require its preliminary training or
long-term tuning. It is based only on the basis of a retrospective analysis of several sequential
values of the spatial coordinates of the aircraft and its control signals, therefore it is not subject to
model errors and can be used to predict the flight path of the aircraft under complete parametric
uncertainty, even in the case of non-identifiability of its flight dynamics model. The results of numerical
simulation of the solution to the problem of predicting the flight path of an unmanned
aerial vehicle of the most common type of quadrocopter under complete uncertainty in parameters
of its mathematical model are presented. The results obtained confirm the efficiency of the developed
method and show high performances of the accuracy of solving the problem and the speed of
tuning the algorithm. The described approach can be used to predict the motion path of any other
vehicle (car, ship, etc.), if its model is linearizable over the observed time interval and there is
information about its control signals. Practical implementation of the described nonparametric
method together with traditional parametric ones will improve the accuracy of flight path predicting
and solve the problem of high-precision landing of an unmanned aerial vehicle on an actively
maneuvering ship, and specifically in the event of various critical situations.

References

1. Bukov V.N. Adaptivnye prognoziruyushchie sistemy upravleniya poletom [Adaptive predictive
flight control systems]. Moscow: Nauka. Gl. red. fiz.-mat. lit., 1987, 232 p.
2. Rabochaya kniga po prognozirovaniyu [Working book on forecasting], ed. by Bestuzhev-Lada
I.V. Moscoq: Mysl', 1982, 430 p.
3. Roffel B., Betlem B. Process dynamics and control: modeling for control and prediction. West
Sussex: John Wiley & Sons, 2006, 543 p.
4. Zybin E.Yu. Ob identifitsiruemosti lineynykh dinamicheskikh sistem v zamknutom konture v
rezhime normal'noy ekspluatatsii [On the identifiability of linear dynamical systems in a
closed circuit in the normal operation mode], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2015, No. 4 (166), pp. 160-170.
5. Zybin E.Yu., Misrikhanov M.Sh., Ryabchenko V.N. O reshenii zadachi identifikatsii lineynykh
diskretnykh sistem metodom kanonizatsii [On solving the problem of identification of linear
discrete systems by the method of canonicalization], Vestnik IGEU [Bulletin of the IGEU],
2005, No. 5, pp. 192-196.
6. Hilgert N., Rossi V., Vila J.-P., Wagner V. Identification, Estimation, and Control of Uncertain
Dynamic Systems: A Nonparametric Approach, Communications in Statistics – Theory and
Methods, 2007, Vol. 36, No. 14, pp. 2509-2525.
7. Kutz J.N. Data-driven Modeling & Scientific Computation: Methods for Complex Systems &
Big Data. Oxford: Oxford University Press, 2013, 638 p.
8. Schwabacher M. A Survey of Data-driven Prognostics, AIAA Infotech@Aerospace, 2005,
pp. 7002.
9. Yin S., Li X., Gao H., Kaynak O. Data-based Techniques Focused on Modern Industry: An
Overview, IEEE Transactions on Industrial Electronics, 2015, Vol. 62, No. 1, pp. 657-667.
10. Hou Z., Jin S. Model Free Adaptive Control: Theory and Applications. New-York: CRC press,
2013. 372 p.
11. Satriawan Y.S., Machbub C., Hidayat E.M.I. Comparison of prediction methods for moving
objects in 3D coordinates using Kalman filter and least square, 2016 6th International Conference
on System Engineering and Technology (ICSET). IEEE, 2016, pp. 128-131.
12. Wang Z., Liang M., Delahaye D. Short-term 4d trajectory prediction using machine learning
methods, Proc. SID, 2017, pp. 1-10.
13. Shi Z. et al. LSTM-based flight trajectory prediction, 2018 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2018, pp. 1-8.
14. Lian K.Y., Yang C.Y. Image recognition system with predicting flying object path using 3D
sensors, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2014, pp. 2317-2321.
15. Xie G. et al. Vehicle trajectory prediction by integrating physics-and maneuver-based approaches
using interactive multiple models, IEEE Transactions on Industrial Electronics,
2017, Vol. 65, No. 7, pp. 5999-6008.
16. Chekin A.Yu., Bondarenko Yu.V., Zybin E.Yu., Kiselev M.A. Nonparametric method for aircraft
state prediction, IOP Conference Series: Materials Science and Engineering, 2019, Vol. 476,
pp. 012003.
17. Kos'yanchuk V.V., Zybin E.Yu. CHekin A.Yu., Bondarenko Yu.V. O prognozirovanii vektora
sostoyaniya vozdushnogo sudna v usloviyakh polnoy parametricheskoy neopredelennosti [On
predicting the state vector of an aircraft under conditions of complete parametric uncertainty],
Perspektivnye sistemy i zadachi upravleniya: Mater. XIV Vserossiyskoy nauchnoprakticheskoy
konferentsii i X molodezhnoy shkoly-seminara «Upravlenie i obrabotka
informatsii v tekhnicheskikh sistemakh» [Perspective systems and management tasks: Materials
of the XIV All-Russian Scientific and Practical Conference and the X Youth School-
Seminar "Management and Information Processing in Technical Systems"]. Rostov-on-Don –
Taganrog: Izd-vo YuFU, 2019, pp. 234-239.
18. Zybin E.Yu., Glasov V.V., Chekin A.Yu. Neparametricheskiy metod prognozirovaniya
dvizheniya sudna posadki bespilotnogo letatel'nogo apparata [Nonparametric method of predicting
the movement of the landing craft of an unmanned aerial vehicle], Sb. tezisov dokladov
IV Vserossiyskoy nauchno-tekhnicheskoy konferentsii «Modelirovanie aviatsionnykh sistem»,
26–27 noyabrya 2020 g., g. Moskva, 2020 [Collection of abstracts of the IV All-Russian Scientific
and Technical Conference "Modeling of Aviation Systems", November 26-27, 2020,
Moscow, 2020], pp. 212-213.
19. Zybin E.Yu., Kos'yanchuk V.V., Karpenko S.S. O nekotorykh neparametricheskikh metodakh teorii
upravleniya dinamicheskimi ob"ektami [On some non-parametric methods, control theory, dynamic
objects], Nauchnye chteniya po aviatsii, posvyashchennye pamyati N.E. Zhukovskogo [Scientific
readings in aviation, dedicated to the memory of N.E. Zhukovsky], 2018, No. 6, pp. 288-298.
20. Kos'yanchuk V.V., Zybin E.Yu., Glasov V.V., Chekin A.Yu., Karpenko S.S., Bondarenko Yu.V.
Metody resheniya nekotorykh zadach teorii lineynykh dinamicheskikh sistem v usloviyakh
polnoy parametricheskoy neopredelennosti [Methods for solving some problems of the theory
of linear dynamical systems under conditions of complete parametric uncertainty], XIII
Vserossiyskoe soveshchanie po problemam upravleniya VSPU-2019: Sb. trudov XIII
Vserossiyskogo soveshchaniya po problemam upravleniya VSPU-2019. Institut problemupravleniya im. V.A. Trapeznikova RAN, 2019 [XIII All-Russian Meeting on VSPU Management
Problems-2019: Proceedings of the XIII All-Russian Meeting on VSPU Management
Problems-2019. V.A. Trapeznikov Institute of Control Problems of the Russian Academy of
Sciences, 2019], pp. 724-729.
21. Zybin E.Yu., Misrikhanov M.Sh., Ryabchenko V.N. O minimal'noy parametrizatsii resheniy
lineynykh matrichnykh uravneniy [On the minimal parametrization of solutions of linear matrix
equations], Vestnik IGEU [Bulletin of the IGEU], 2004, No. 6, pp. 127-131.
22. Prouty R. Helicopter Performance, Stability, and Control. PWS Publishers, 2005.
23. Ponds P., Mahony R., Corke P. Modelling and control of a large quadrotor robot. Control Engineering
Practice. 2010.
24. Glasov V.V., Zybin E.Yu., Kos'yanchuk V.V. Neparametricheskiy metod stabilizatsii
prostranstvennogo polozheniya bespilotnogo letatel'nogo apparata [Nonparametric method for
stabilizing the spatial position of an unmanned aerial vehicle], Mater. konferentsii «Upravlenie
v aerokosmicheskikh sistemakh» (UAKS-2020) im. akademika E.A. Mikrina [Proceedings of
the conference" Management in Aerospace Systems " (UAKS-2020) named after Academician
E.A. Mikrin]. Saint Petersburg: AO «Kontsern «TSNII «Elektropribor», 2020, pp. 22-25.
Published
2021-04-04
Section
SECTION I. PROSPECTS FOR THE USE OF ROBOTIC SYSTEMS