DEVELOPMENT OF A HYBRID METHOD FOR PLANNING THE MOVEMENT OF A GROUP OF MARINE ROBOTIC COMPLEXES IN AN A PRIORI UNKNOWN ENVIRONMENT WITH OBSTACLES

  • А.М. Maevsky “Oceanos” JSC
  • R.O. Morozov “Oceanos” JSC
  • А. Е. Gorely “Oceanos” JSC
  • V.A. Ryzhov SMTU
Keywords: AUV, group control, control system, path planning, RRT method, potential fields

Abstract

The article discusses the problem of organizing the group movement of marine robotics
(MRS), in particular, unmanned autonomous underwater vehicles (AUV), in an a priori unknown
environment with obstacles. A brief analysis of existing projects on the subject of MRS group control,
and path-planning algorithms have been carried out. The presence of numerous studies in
this area confirms the relevance of the indicated problem. The formal statement of the problem of
the movement of four robots in formation is presented. The proposed method for a group path
planning is based on a combined approach that organizes a multi-level solution to organizing the
movement of MRS. At the upper level, a system for global path planning and mission control was
developed based on the random tree method, which provides the general movement of the group
based on a priori information about the state of the environment. The lower-level planning system
adjusts the global path, allowing objects at the local level to carry out the group agents’ movement
and interaction, including ensuring their collision-free movement in environment and exit from the
areas of local minima. The article provides a detailed analytical description of the developed algorithm
and a block diagram of its functioning. Numerical simulation of the movement of a group
of 4 AUVs in a non-deterministic environment with fixed obstacles is carried out. The simulation
was carried out taking into account obstacles of various shapes and complexity. The results of
mathematical modeling demonstrated the solution to the problem of the exit of the AUV group
from the area of the local minimum. Full-scale tests are presented on the example of a group of
three unmanned boats: a group of mobile objects formed a formation and carried out a movement
in a given formation to target positions and returned to the final zone. In addition, the local planning
module developed within the framework of this article was integrated into the software of the
"Shadow" underwater glider control system. In the conclusion, the results of the proposed method
and its further development, in particular, its application in 3D environment, are considered.

References

1. Zanin V.Yu., Kozhemyakin I.V., Maevskiy A.M. Ispol'zovanie morskoy robototekhniki v
zadachakh operativnoy okeanografii. Otechestvennyy i zarubezhnyy opyt [The use of marine
robotics in operational oceanography tasks. Domestic and foreign experience], Morskie
informatsionno-upravlyayushchie sistemy [Marine information and control systems], 2020,
No. 1 (17), pp. 39-49.
2. Maevskiy A.M., Kopylov S.A. Aspekty ispol'zovaniya gruppirovki podvodnykh glayderov
dlya ekologicheskogo monitoringa mirovogo okeana [Aspects of using the grouping of underwater
gliders for environmental monitoring of the world ocean], Mater. vserossiyskoy
konferentsii i shkoly molodykh uchenykh «Sistemy obespecheniya tekhnosfernoy bezopasnosti»
[Materials of the All-Russian conference and school of young scientists "Systems for ensuring
Technosphere security"]. Taganrog: YuFU, 2014, pp. 11-12.
3. Voloshin S.B., Zanin V.Yu. Maevskiy A.M. i dr. Aspekty primeneniya geterogennykh grupp
robototekhnicheskikh kompleksov povyshennoy avtonomnosti, v tom chisle iz sostava
observatoriy, s tsel'yu polucheniya okeanograficheskikh dannykh i ikh dal'neyshego
ispol'zovaniya dlya osvoeniya Arkticheskoy zony [Aspects of the application of heterogeneous
groups of robotic complexes of increased autonomy, including from the composition of observatories,
for the purpose of obtaining oceanographic data and their further use for the development
of the Arctic zone], Sb. rabot laureatov Mezhdunarodnogo konkursa nauchnykh,
nauchno-tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie i osvoenie
Arktiki i kontinental'nogo shel'fa 2020 goda [Collection of works of laureates of the International
Competition of Scientific, Scientific-technical and Innovative Developments aimed at
the development and development of the Arctic and Continental Shelf in 2020]. Moscow:
Ministerstvo energetiki Rossiyskoy Federatsii, OOO «Tekhnodevelop», 2020, pp. 62-77.
4. Gaykovich B.A. Razrabotka modul'nounifitsirovannogo semeystva podvodnykh glayderov.
Novyy oboronnyy zakaz. 2017, 05 [Development of a modularunified family of underwater
gliders. A new defense order. 2017, 05].
5. Gaykovich B.A. Podvodnye glaydery-roboty dlya issledovaniya i monitoringa arkticheskikh
akvatoriy [Underwater gliders-robots for research and monitoring of Arctic waters],
Korabel.ru [Korabel.ru], 2015, No. 4 (30), pp. 126-12.
6. Gaykovich B.A., Zanin V.Yu. Voprosy sozdaniya semeystva morskikh glayderov kak
elementov global'noy sistemy morskoy bezopasnosti [Issues of creating a family of marine
gliders as elements of the global maritime security system], Mater. 9 nauchnoprakticheskoy
konferentsii «Perspektivnye sistemy i zadachi upravleniya» [Materials of the 9th scientific and
practical conference "Perspective systems and management tasks"], 2014, pp. 211-218.
7. Devitt D., Morozov R., Medvedev M., Shapovalov I., Konovalov G. Implementation of the
hybrid technology for quadcopter motion control in a complex non-deterministic environment,
International Conference on Control, Automation and Systems, 2018, Vol. 18, pp. 451-456.
8. Beloglazov D., Pereverzev V., Soloviev V., Pshikhopov V., Morozov R. Method of formation of
quantitative indicators of complexity of the environment by a group of autonomous mobile robots,
Journal of Robotics, 2020, Vol. 2020, pp. 6874291.
9. Martynova L.A., Kiselev N.K., Myslivyy A.A. Metod vybora arkhitektury mul'tiagentnoy
sistemy upravleniya avtonomnogo neobitaemogo podvodnogo apparata [Method of selecting
the architecture of a multi-agent control system of an autonomous uninhabited underwater vehicle],
Informatsionno-upravlyayushchie sistemy [Information and control systems], 2020,
No. 4, pp. 31-41. Doi: 10.31799/1684-8853-2020-4-31-41.
10. Kiselev N.K., Martynova L.A., Pashkevich I.V. Matematicheskaya model' funktsionirovaniya
gibridnoy sistemy energoobespecheniya v sostave stenda otladki i soprovozhdeniya ANPA
[Mathematical model of the functioning of a hybrid power supply system as part of the ANPA
debugging and maintenance stan], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2020, No. 1, pp. 170- 187.
11. Gaiduk A.R., Martjanov O.V., Medvedev M.Yu., Pshikhopov V.Kh., Hamdan N., Farhood A.
Neural network based control system for robots group operating in 2-d uncertain environment,
Мechatronics, Automation, Control, 2020, Vol. 21, No. 8, pp. 470-479.
12. Pshikhopov V.Kh., Medvedev M.Yu., Parkhomenko V.B., Vasil'eva M.A. Issledovanie
intellektual'noy sistemy upravleniya avtonomnogo nazemnogo robota s neyronnoy set'yu
glubokogo obucheniya [Research of the intelligent control system of an autonomous ground
robot with a neural network of deep learning], Informatsionnye tekhnologii v upravlenii (ITU-
2018): Mater. konferentsii [Information technologies in management (ITU-2018): Materials of
the conference], 2018, pp. 176-182.
13. Dzhunusov I.A., Fradkov A.L. Sinkhronizatsiya v setyakh lineynykh agentov s obratnymi
svyazyami po vykhodam [Synchronization in networks of linear agents with feedback on outputs],
Avtomatika i telemekhanika [Automation and Telemechanics], 2011, No. 8, pp. 41-52.
14. Timofeev A.V. Adaptivnoe upravlenie i intellektual'nyy analiz informatsionnykh potokov v
komp'yuternykh setyakh [Adaptive management and intelligent analysis of information flows
in computer networks]. Moscow: Anatoliya, 2012, 280 p.
15. Platonov A.K., Kiril'chenko A.A., Kolganov M.A. Metod potentsialov v zadache vybora puti:
istoriya i perspektivy [The method of potentials in the problem of choosing a path: history and
prospects]. Moscow: IPM im. M.V. Keldysha, 2001, 32 p.
16. Boguslavskiy A.A., Borovin G.K., Kartashev V.A., Pavlovskiy V.E., Sokolov S.M. Modeli i
algoritmy dlya intellektual'nykh sistem upravleniya [Models and algorithms for intelligent control
systems]. Moscow: IPM im. M.V. Keldysha, 2019, 228 p. Available at: https://doi.org/
10.20948/mono-2019-boguslav.
17. Pshikhopov V.Kh., Medvedev M.Yu. Gruppovoe upravlenie dvizheniem mobil'nykh robotov v
neopredelennoy srede s ispol'zovaniem neustoychivykh rezhimov [Group control of the
movement of mobile robots in an uncertain environment using unstable modes], Tr. SPIIRAN
[Works of SPIIRAS], 2018, No. 5 (60), pp. 39-63.
18. Maevskiy A.M., Gaykovich B. A. Razrabotka legkogo interventsionnogo avtonomnogo
neobitaemogo podvodnogo apparata v tselyakh ispol'zovaniya v podvodnykh rezidentnykh
sistemakh [Development of a light interventional autonomous uninhabited underwater vehicle
for use in underwater resident systems], Mater. XIV Vserossiyskoy nauchno-prakticheskoy
konferentsii i X molodezhnoy shkoly-seminara «Upravlenie i obrabotka informatsii v
tekhnicheskikh sistemakh» [Materials of the XIV All-Russian Scientific and Practical Conference
and the X Youth School-seminar "Information Management and Processing in Technical
systems"]. Rostov-on-Don; Taganrog: Izd-vo: YuFU, 2019, pp. 83-98.
19. Schultz B. & Hobson B. & Kemp, Mathieu & Meyer J. & Moody R. & Pinnix H. & Clair M..
Multi-UUV missions using RANGER MicroUUVs, 2003.
20. Shinzaki, Dylan & Gage, Chris & Tang, Sarah & Moline, Mark & Wolfe, Barrett & Lowe,
Christopher & Clark, Christopher. A multi-AUV system for cooperative tracking and following
of leopard sharks, Proceedings – IEEE International Conference on Robotics and Automation,
2013, pp. 4153-4158. Doi: 10.1109/ICRA.2013.6631163.
7. Devitt D., Morozov R., Medvedev M., Shapovalov I., Konovalov G. Implementation of the
hybrid technology for quadcopter motion control in a complex non-deterministic environment,
International Conference on Control, Automation and Systems, 2018, Vol. 18, pp. 451-456.
8. Beloglazov D., Pereverzev V., Soloviev V., Pshikhopov V., Morozov R. Method of formation of
quantitative indicators of complexity of the environment by a group of autonomous mobile robots,
Journal of Robotics, 2020, Vol. 2020, pp. 6874291.
9. Martynova L.A., Kiselev N.K., Myslivyy A.A. Metod vybora arkhitektury mul'tiagentnoy
sistemy upravleniya avtonomnogo neobitaemogo podvodnogo apparata [Method of selecting
the architecture of a multi-agent control system of an autonomous uninhabited underwater vehicle],
Informatsionno-upravlyayushchie sistemy [Information and control systems], 2020,
No. 4, pp. 31-41. Doi: 10.31799/1684-8853-2020-4-31-41.
10. Kiselev N.K., Martynova L.A., Pashkevich I.V. Matematicheskaya model' funktsionirovaniya
gibridnoy sistemy energoobespecheniya v sostave stenda otladki i soprovozhdeniya ANPA
[Mathematical model of the functioning of a hybrid power supply system as part of the ANPA
debugging and maintenance stan], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2020, No. 1, pp. 170- 187.
11. Gaiduk A.R., Martjanov O.V., Medvedev M.Yu., Pshikhopov V.Kh., Hamdan N., Farhood A.
Neural network based control system for robots group operating in 2-d uncertain environment,
Мechatronics, Automation, Control, 2020, Vol. 21, No. 8, pp. 470-479.
12. Pshikhopov V.Kh., Medvedev M.Yu., Parkhomenko V.B., Vasil'eva M.A. Issledovanie
intellektual'noy sistemy upravleniya avtonomnogo nazemnogo robota s neyronnoy set'yu
glubokogo obucheniya [Research of the intelligent control system of an autonomous ground
robot with a neural network of deep learning], Informatsionnye tekhnologii v upravlenii (ITU-
2018): Mater. konferentsii [Information technologies in management (ITU-2018): Materials of
the conference], 2018, pp. 176-182.
13. Dzhunusov I.A., Fradkov A.L. Sinkhronizatsiya v setyakh lineynykh agentov s obratnymi
svyazyami po vykhodam [Synchronization in networks of linear agents with feedback on outputs],
Avtomatika i telemekhanika [Automation and Telemechanics], 2011, No. 8, pp. 41-52.
14. Timofeev A.V. Adaptivnoe upravlenie i intellektual'nyy analiz informatsionnykh potokov v
komp'yuternykh setyakh [Adaptive management and intelligent analysis of information flows
in computer networks]. Moscow: Anatoliya, 2012, 280 p.
15. Platonov A.K., Kiril'chenko A.A., Kolganov M.A. Metod potentsialov v zadache vybora puti:
istoriya i perspektivy [The method of potentials in the problem of choosing a path: history and
prospects]. Moscow: IPM im. M.V. Keldysha, 2001, 32 p.
16. Boguslavskiy A.A., Borovin G.K., Kartashev V.A., Pavlovskiy V.E., Sokolov S.M. Modeli i
algoritmy dlya intellektual'nykh sistem upravleniya [Models and algorithms for intelligent control
systems]. Moscow: IPM im. M.V. Keldysha, 2019, 228 p. Available at: https://doi.org/
10.20948/mono-2019-boguslav.
17. Pshikhopov V.Kh., Medvedev M.Yu. Gruppovoe upravlenie dvizheniem mobil'nykh robotov v
neopredelennoy srede s ispol'zovaniem neustoychivykh rezhimov [Group control of the
movement of mobile robots in an uncertain environment using unstable modes], Tr. SPIIRAN
[Works of SPIIRAS], 2018, No. 5 (60), pp. 39-63.
18. Maevskiy A.M., Gaykovich B. A. Razrabotka legkogo interventsionnogo avtonomnogo
neobitaemogo podvodnogo apparata v tselyakh ispol'zovaniya v podvodnykh rezidentnykh
sistemakh [Development of a light interventional autonomous uninhabited underwater vehicle
for use in underwater resident systems], Mater. XIV Vserossiyskoy nauchno-prakticheskoy
konferentsii i X molodezhnoy shkoly-seminara «Upravlenie i obrabotka informatsii v
tekhnicheskikh sistemakh» [Materials of the XIV All-Russian Scientific and Practical Conference
and the X Youth School-seminar "Information Management and Processing in Technical
systems"]. Rostov-on-Don; Taganrog: Izd-vo: YuFU, 2019, pp. 83-98.
19. Schultz B. & Hobson B. & Kemp, Mathieu & Meyer J. & Moody R. & Pinnix H. & Clair M..
Multi-UUV missions using RANGER MicroUUVs, 2003.
20. Shinzaki, Dylan & Gage, Chris & Tang, Sarah & Moline, Mark & Wolfe, Barrett & Lowe,
Christopher & Clark, Christopher. A multi-AUV system for cooperative tracking and following
of leopard sharks, Proceedings – IEEE International Conference on Robotics and Automation,
2013, pp. 4153-4158. Doi: 10.1109/ICRA.2013.6631163
21. Leonard N.E., Paley D.A., Davis R.E., Fratantoni D.M., Lekien F. and Zhang F. Coordinated
control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey
Bay, J. Field Robotics, 2010, Vol. 27, pp. 718-740. Doi: 10.1002/rob.20366.
22. Beloglazov D.A., Gayduk A.R., Kosenko E.Yu., Medvedev M.Yu., Pshikhopov V.Kh., Solov'ev
V.V., Titov A.E., Finaev V.I., Shapovalov I.O. Gruppovoe upravlenie podvizhnymi ob"ektami v
neopredelennykh sredakh [Group control of mobile objects in indeterminate environments],
ed. by V.Kh. Pshikhopova. Moscow: Fizmatlit, 2015, 305 p.
23. RRTX: Asymptotically Optimal Single-Query Sampling-Based Motion Planning with Quick
Replanning. Michael Otte and Emilio Frazzoli, The International Journal of Robotics Research,
2016, Vol. 29, Issue 7, pp. 797-822.
Published
2021-04-04
Section
SECTION I. PROSPECTS FOR THE USE OF ROBOTIC SYSTEMS