MULTICHANNEL SYSTEM DESIGN OPTIMIZATION USING LOGICAL SYNTHESIS FOR QUALITY IMPROVEMENT OF VOLUME VISUALIZATION

  • N.I. Vitiska
  • N.A. Gulyaev
  • V.V. Selyankin
Keywords: Optimization, multi-channel systems, logical synthesis, volume visualization, visualization quality, ray tracing

Abstract

The paper reviewes a problem of optimization and quality improvement of development and
design of multi-channel systems which perform direct volume visualization. Volume visualization
is widely used in modern computer graphics and visualization systems. Volume visualization is
well-know for its requrements - it demands large amounts of data to be processed to produce a
high quality result. The optimization problem is considered as a quality-cost dependence, where
the target is to achieve is the required quality level at minimal cost. The paper proposes a method
for logical synthesis of such systems, which allows to obtain optimal quality-cost ratios depending
on the required parameters. The proposed method allows to achieve a quality level, that is close to
results of a full-search solutions, but it requires a significantly smaller amount of calculations. For
each channel of the system, a set of variables is defined, the optimization of which will ensure the
quality of the resulting images. Based on the optimization parameters, a switching function is constructed
using a Veitch diagram. This approach is implemented programmatically in each channel
of the distributed system in real time, what sets the general scheme of the method. In described
study, experimental research of relatationship between the accuracy of the solution and the
amount of calculations of direct volume visualization in each channel of a distributed system was
performed. A method for optimal image synthesis based equalizing the playback quality in a small
group of channels in a distributed system was developed.

References

1. Vitiska N.I., Gulyaev N.A., Danilov I.G. O problemakh i zadachakh obrabotki i organizatsii
dannykh pri ob"emnoy vizualizatsii na raspredelennykh sistemakh [On problems and tasks of data
processing and organization in volumetric visualization on distributed systems], Izvestiya
YuFU. Tekhnicheskie nauki [.Izvestiya SFedU. Engineering Sciences], 2019, No. 4, pp. 153-163.
2. Vitiska N.I. i dr. Optimizatsiya pryamoy ob"emnoy vizualizatsii s programmiruemym
upravleniem kachestva: monografiya [Optimization of direct volumetric visualization with
programmable quality control: monograph]. Moscow: Izd-vo «Pero», 2020, 82 p.
3. Vitiska N., Selyankin V., Gulyaev N. An Approach to Optimization of Ray-Tracing in Volume
Visualization Based on Properties of Volume Elements, Proceedings of the Third International
Scientific Conference «Intelligent Information Technologies for Industry» (IITI’18). Springer
International Publishing, 2019, Vol. 1, pp. 148-158.
4. Strassburger S., Schulze T., Fujimoto R. Future trends in distributed simulation and distributed
virtual environments: results of a peer study, Proc. 40th Conferenceon Winter Simulation,
2008, pp. 777-785.
5. Morozov B.B. i dr. Osobennosti postroeniya sistem vizualizatsii na baze raspredelennoy
mul'timediynoy sredy [Features of building visualization systems based on a distributed multimedia
environment], Vestnik NGU. Seriya: Fizika [Bulletin of the NSU. Series: Physics],
2013, No. 4 (8), pp. 118-124.
6. Morozov B.B. i dr. Postroenie raspredelennoy mul'timediynoy virtual'noy sredy c
mnogokanal'noy vizualizatsiey mediadannykh na graficheskikh akseleratorakh [Building a distributed
multimedia virtual environment with multichannel visualization of media data on
graphics accelerators], Mater. 25-y Mezhdunarodnoy konferentsii po komp'yuternoy grafike i
zreniyu GrafiKon – 2015 [Proceedings of the 25th International Conference on Computer
Graphics and Vision GraphiCon-2015], 2013, pp. 166-170.
7. Vitiska N.I., Gulyaev N.A. Issledovanie i razrabotka metoda sokrashcheniya vychisleniy pri
trassirovke luchey v ob"emnoy vizualizatsii [Research and development of a method for reducing
calculations in ray tracing in volumetric visualization], Informatizatsiya i svyaz'
[Informatization and communication], 2018, No. 6, pp. 44-52.
8. Slyadnikov E.E. Modelirovanie raspredelennykh informatsionno-telekommunikatsionnykh
sistem s paketnoy peredachey dannykh [Modeling of distributed information and telecommunications
systems with packet data transmission], Izvestiya Tomskogo politekhnicheskogo
universiteta [Proceedings of the Tomsk Polytechnic University], 2008, No. 5, pp. 55-60.
9. Kalinichenko S.V., Khomonenko A.D. Model' otsenki operativnosti funktsionirovaniya
raspredelennykh avtomatizirovannykh sistem pri integratsii dannykh [The model of estimation
of efficiency of functioning of the distributed automated systems when integrating data],
Byulleten' rezul'tatov nauchnykh issledovaniy: elektronnyy nauchnyy zhurnal [Bulletin of the
results of scientific research: electronic scientific journal], 2012, No. 5 (4), pp. 47-57.
10. Barskiy A.B., Mel'nik D.I., Pirozhnik V.V. Model' upravleniya kachestvom vychisli-tel'nykh
sredstv raspredelennoy mnogokanal'noy sistemy massovogo obsluzhivaniya [The model of
quality management of computational means of a distributed multichannel queuing system],
Informatsionnye tekhnologii [Information technologies], 2019, No. 6 (25), pp. 358-367.
11. Shelobaev S.I. Matematicheskie metody i modeli v ekonomike, finansakh, biznese: ucheb.
posobie dlya vuzov [Mathematical methods and models in economics, finance, and business: a
textbook for universities]. Moscow: YuNITI-DANA, 2001, 367 p.
12. Arsen'ev Yu.I., Shelobaev S.I. Modeli i metody optimizatsii resursov sub"ektov rynka [Models
and methods of optimizing the resources of market subjects]. Moscow: Vysshaya shkola,
1998.
13. Arsen'ev Yu.I., SHelobaev S.I. Analiz, sintez i optimizatsiya sotsio-tekhno-ekonomicheskikh
sistem: nadezhnost', bezopasnost', effektivnost', kachestvo [Analysis, synthesis and optimization
of socio-techno-economic systems: reliability, safety, efficiency, quality]. Moscow:
Vysshaya shkola, 1998.
14. Meyhak H. Simultane Gesamtplanung im mehrstufigen Mehrproduktunternehmen. Mannheim,
1968.
15. Zwehl W. von. Programmierung Ganzzahlige, Handwörterbuch der Wissenschaften.
Stuttgart u.a, 1988.
16. Takha Kh. Vvedenie v issledovanie operatsiy [Introduction to the study of operations]. Moscow:
Mir, 1985, Vol. 1, Vol. 2.
17. Eddous M., Stensfild R. Metody prinyatiya resheniy [Methods of decision-making]. Moscow:
Audit, YuNITI, 1997.
18. Beshelev S.D., Gurvich F.G. Matematiko-statisticheskie metody ekspertnykh otsenok [Mathematical
and statistical methods of expert assessments]. Moscow: Statistika, 1980.
19. Bunkin V.A., Kuritskiy B.Ya., Sokurenko Yu.A. Spravochnik po optimizatsionnym zadacham v
ASU [Handbook of optimization problems in automated control systems]. Leningrad:
Mashinostroenie, 1984.
20. Arsen'ev Yu.I., Minaev V.S. Upravlenie riskami [Risk management]. Moscow: Vysshaya
shkola, 1997.
Published
2021-02-25
Section
SECTION IV. PROBLEM-ORIENTED AND EMBEDDED COMPUTING SYSTEMS