SCALING OF INTEGER DATA IN RECONFIGURABLE COMPUTER SYSTEMS WHEN CALCULATING A RADAR RANGE-VELOCITY PORTRAIT

  • O.V. Ershova
  • E.V. Kirichenko
  • M.S. Kocherga
  • E.A. Semernikov
Keywords: Scaling, range-velocity portrait, fast Fourier transform, reconfigurable computer systems, digital signal processing, linear frequency modulation

Abstract

This article deals with the question of preventing overflows of the bit grid in highperformance
reconfigurable computing systems based on FPGAs, leading to fatal data processing
errors when obtaining a radar range-velocity portrait of the target. The known methods of solving
this problem are briefly considered. A new method for a priori determination of the number of
scaling points in pipeline-parallel computing structures that form the target's radar range-velocity
portrait is proposed. This technique allows to determine in advance the required number of scaling
points at all stages of integer data processing and to prevent overflows when calculating theFFT (IFFT) in all possible situations. An algorithm of forming of range-velocity portrait from an
initial signal matrix is considered by the example of a continuous-wave radar system with linear
frequency modulation (LFM). Formulas for calculating the maximum value of the amplitude of the
converted signals at all stages of obtaining the range-velocity portrait and the number of iterations
with scaling in the FFT (IFFT) procedures are given. A numerical example of calculating the
number of scaling points for all stages of the algorithm of range-velocity portrait formation is
presented. In the example the required number of iterations with scaling is determined when calculating
the fast convolution and Doppler velocity (taking into account multiplication by the window
function). It allows to prevent signal values from going beyond the bounds of the bit grid. As a
result, it was found that the proposed method for calculating the number of scaling points avoids
an excessive drop in the signal level at the processing output and reduces the ratio of digital processing
errors to the signal level of the range-velocity matrix.

References

1. Kalyaev I.A., Levin I.I. Mnogoprotsessornye vychislitel'nye sistemy (superkomp'yutery):
sostoyanie i perspektivy [Multiprocessor computing systems (supercomputers): state and prospects],
Vestnik komp'yuternykh i informatsionnykh tekhnologiy [Bulletin of computer and information
technologies], 2004, No. 6, pp. 25-44.
2. Dmitrenko N.N., Kalyaev I.A., Levin I.I., Semernikov E.A. Razvitie apparaturnoy platformy
rekonfiguriruemykh vychislitel'nykh sistem [Development of a hardware platform for reconfigurable
computing systems], Tr. Mezhdunarodnoy super-komp'yuternoy konferentsii:
Nauchnyy servis v seti Internet: superkomp'yuternye tsentry i zadachi. (Novorossiysk, 20-25
sentyabrya 2010 g.) [Proceedings of the International Supercomputer Conference: Scientific
service on the Internet: supercomputer centers and tasks (Novorossiysk, September 20-25,
2010)]. Mosow: Izd-vo MGU, 2010, pp. 315-320.
3. Kalyaev I.A., Levin I.I., Semernikov E.A., SHmoylov V.I. Rekonfiguriruemye
mul'tikonveyernye vychislitel'nye struktury [Reconfigurable multicore computational structures].
Rostov-on-Don: Izd-vo YuNTS RAN, 2009, 320 p.
4. Dordopulo A.I., Kalyaev I.A., Levin I.I., Semernikov E.A. Vysokoproizvoditel'nye
rekonfiguriruemye vychislitel'nye sistemy novogo pokoleniya [High-performance reconfigurable
computing systems of a new generation], Tr. 13-y Mezhdunarodnoy superkomp'yuternoy
konferentsii: Nauchnyy servis v seti Internet: ekzaflopsnoe budushchee. (Novorossiysk, 19-24
sentyabrya 2011 g.) [Proceedings of the 13th International Supercomputer Conference: Scientific
Service on the Internet: Exaflops Future. (Novorossiysk, September 19-24, 2011)]. Moscow:
Izd-vo MGU, 2011, pp. 42-49.
5. Radiolokatsionnye signaly dlya aerokosmicheskikh, oboronnykh i avtomobil'nykh RLS: sayt
[Radar signals for aerospace, defense and automotive radars: website]. Available at:
https://www.astrosoft.ru/articles/radar/radiolokatsionnye-signaly-dlya-aerokosmicheskikhoboronnykh-
i-avtomobilnykh-rls/ (accessed 20 October 2020).
6. Asuzu P., Thompson C. A more exact linear FMCW radar signal model for simultaneous
range-velocity estimation, IEEE Radar Conference (RadarConf18), 2018, pp. 7-11.
7. Skolnik, Merrill I. Introduction of Radar Systems, McGraw-Hill Inc. ISBN - 978007118189,
1962.
8. Stove A.G. Linear FMCW radar techniquesб Radar and Signal Processing, IEE Proceedings
F, Oct. 1992, Vol. 139, Issue 5, pp. 343-350.
9. Dal'nostno-skorostnoy portret (obnaruzhenie) v avtomobil'nykh RLS s nepreryvnym LCHMsignalom:
sayt [Range-velocity portrait in car radars with continuous chirp signal: website]. Available
at: https://www.astrosoft.ru/articles/radar/ dalnostno-skorostnoy-portret-obnaruzhenie-vavtomobilnykh-
rls-s-nepreryvnym-lchm-signalom/ (accessed 08 November 2020).
10. Folster F., Rohling H., Lubbert U. An Automotive radar network based on 77GHz FMCW
sensors, Radar Conference, 2005 IEEE International, 9-12 May 2005, pp. 871-876.
11. Mende R., Rohling H. A High-Performance AICC radar and results with an experimental vehicle,
Radar 97 (Conf. Publ. No. 449), 14.-16.Oct 1997, pp. 21-25.
12. Geroleo F.G., Brandt-Pearce M. Detection and Estimation of Multi-Pulse LFMCW Radar
Signals, IEEE Transactions on Aerospace and Electronic Systems, Jan. 2012, Vol. 48, Issue 1,
pp. 405-418.
13. Titov D.A., Vasilevskiy V.V., Kosykh A.V. TSifrovaya obrabotka signalov: Metodicheskie
ukazaniya k laboratornym rabotam (Omsk-2011) [Digital signal processing: Methodological
instructions for laboratory work. (Omsk-2011)]. Available at: https://omgtu.ru/general_ information/
faculties/radio_engineering_department/department_quot_radio_devices_and_diagnost
ic_systems_quot/educational-materials/Digital_signal_processing/Methodical_instructions_to_
laboratory_works.pdf. (accessed 08 November 2020).
14. Realizatsiya tselochislennogo BPF na PLIS: sayt [Implementation of integer FFT on FPGA:
website]. Available at: https://habr.com/ru/post/420517/ (accessed 08 November 2020).
15. Rabiner L., Gould B. Teoriya i primenenie tsifrovoy obrabotki signalov [Theory and application
of digital signal processing]. Moscow: Mir, 1978, 848 p.
16. Layons R. Tsifrovaya obrabotka signalov [Digital signal processing]. Moscow: Binom-Press,
2011, 654 p.
17. Oppengeym A., Shafer R. TSifrovaya obrabotka signalov [Digital signal processing]. Moscow:
Tekhnosfera, 2012, 1048 p.
18. Ayficher E.S., Dzhervis B.U. TSifrovaya obrabotka signalov: prakticheskiy podkhod [Digital
signal processing: a practical approach]. 2nd ed. Moscow: Vil'yams, 2016, 992 p.
19. Smit S. Tsifrovaya obrabotka signalov. Prakticheskoe rukovodstvo dlya inzhenerov i
nauchnykh rabotnikov [Digital signal processing. A Practical Guide for Engineers and Scientists]:
transl. from engl. Moscow: Dodeka XXI, 2008, 720 p.
20. LogiCORE IP Fast Fourier Transform v9.0. Product Guide. Vivado Design Suite. PG109,
October 4, 2017. Available at: http://www.xilinx.com/support/documentation/ip_ documentation/
xfft/v9_0/pg109-xfft.pdf. (accessed 08 November 2020).
21. Ershova O.V., Kirichenko E.V., Semernikov E.A., Chkan A.V. Upravlenie masshtabirovaniem
dannykh v protsedure soglasovannoy fil'tratsii v zavisimosti ot energii signala [Data scaling
control in the matched filtering procedure depending on the signal energy], Mater. 8-y
Vserossiyskoy mul'tikonferentsii po problemam upravleniya MKPU [Proceedings of the 8th
All-Russian multiconference on management problems of the MCPU]. Rostov-on-Don: Izd-vo
YuFU, 2015, Vol 3, pp. 92-96.
22. Ershova O.V., Kirichenko E.V., Semernikov E.A., Chkan A.V. Masshtabirovanie dannykh s
fiksirovannoy tochkoy v protsedure bystroy svertki [Scaling of fixed-point data in a fast convolution
procedure], Radiotekhnika [Radio engineering], 2015, No. 4, pp. 66-72.
Published
2021-02-25
Section
SECTION IV. PROBLEM-ORIENTED AND EMBEDDED COMPUTING SYSTEMS