RESEARCH OF MASKING PROPERTIES OF SILICON OXIDE FILMS FOR SILICON MEMBRANE FABRICATION BY WET ETCHING

  • S.V. Malohatko Southern Federal University
  • E.Y. Gusev Southern Federal University
Keywords: Bulk micromachining, plasma enhanced chemical vapor deposition, thermal oxidation, anisotropic wet etching, protective coatings, silicon oxide, silicon, potassium hydroxide

Abstract

Microelectromechanical sensors of the membrane type are fabricated by surface and bulk
micromachining. In the latter case, the membranes are obtained by deep anisotropic etching of a
single-crystal silicon layer or substrate to a thickness of 20–50 μm. In this case, both dry and wet
etching methods are used. The advantage of wet etching is easy control of the lateral dimensions
of the membranes and high selectivity. High selectivity of etching can be achieved due to the
choice of the appropriate composition of the etching solution, the material of the protective coating
and fabrication techniques. The paper presents an experimental study of the protective properties
of silicon oxide films obtained by thermal oxidation, plasma-chemical deposition, and combined
coating of these films under wet etching of single-crystal silicon in a 30% aqueous solution
of potassium hydroxide at a temperature of 80°C. The etching selectivity, residual thickness,
roughness, and surface concentration of local defects were calculated using data of stylus
profilometry, optical interferometry, and microscopy. It was found that the rates and selectivity of
etching of thermal oxide and plasma chemical oxide after rapid thermal annealing are quite close
– 6,7 nm/min, 1:338 and 7 nm/min, 1:372, respectively. The surface roughness of the oxide films
increased more when etching the thermal oxide films, as well as the plasma oxide of composite
coating. The root-mean-square values of the residual roughness were 1–2 nm. Local defects of the
etched alike with a concentration of 0,1–0,2 mm-2 were found in the films. It was found that the use
of a 1 μm plasma oxide layer in a combined coating prevents etching of the thermal oxide, but to
avoid local defects, its thickness should be increased to 1,5–2,0 μm; an annealed film of plasma
oxide, with a thickness of 2,0 μm, can also be considered as an effective protective coating for
deep wet etching of silicon.

References

1. Nanotekhnologii v mikroelektronike [Nanotechnologies in microelectronics], ed. by
O.A. Ageeva, B.G. Konoplyova. Moscow: Nauka, 2019, 511 p. ISBN 978-5-02-040201-0.
2. Franssila Sami. Introduction to Microfabrication. Chichester, 2010, 508 p.
3. Rubtsevich I.I., Solov'ev Ya.A., Vysotskiy V. B. [i dr.]. Issledovanie svoystv plenok nitrida i
oksida kremniya, poluchennykh metodom plazmokhimicheskogo osazhdeniya na kremnievuyu
podlozhku [Investigation of the properties of silicon nitride and oxide films obtained by plasma-
chemical deposition on a silicon substrate], Tekhnologiya i konstruirovanie v elektronnoy
apparature [Technology and design in electronic equipment], 2011, No. 4, pp. 29-32.
4. Kireev V.Yu. Vvedenie v tekhnologii mikroelektroniki i nanotekhnologii [Introduction to the
technology of microelectronics and nanotechnology]. Moscow: FGUP «TSNIIKhM», 2008,
428 p.
5. Luchinin V.V., Tairov Yu.M. Nanotekhnologiya: fizika, protsessy, diagnostika, pribory [Nanotechnology:
physics, processes, diagnostics, devices]. Moscow: Fizmatlit, 2006, 552 p.
6. Canavese G., Marasso S.L., Quaglio M. [et al.]. Polymeric mask protection for alternative
KOH silicon wet etching, Journal of Micromechanics and Microengineering, 2007, Vol. 17
(7), pp. 1387-1393.
7. Kang S.-K., Hwang S.-W., Cheng H. [et al.]. Dissolution Behaviors and Applications of Silicon
Oxides and Nitrides in Transient Electronics, Advanced Functional Materials, 2014, Vol.
24 (28), pp. 4427-4434.
8. Shikida M., Sato K., Tokoro K., Uchikawa D. Differences in anisotropic etching properties of KOH
and TMAH solutions, Sensors and Actuators A: Physical, 2000, Vol. 80, No. 2, pp. 179-188.
9. Radjenović B., Radmilović-Radjenović M., Mitrić M. Level Set Approach to Anisotropic Wet
Etching of Silicon, Sensors, 2010, Vol. 10, pp. 4950-4967.
10. Lu H., Zhang H., Jin M. [et al.]. Two-Layer Microstructures Fabricated by One-Step Anisotropic
Wet Etching of Si in KOH Solution, Micromachines, 2016, Vol. 7(2), 19.
11. Chen J., Liu L., Li Z [et al.]. Study of anisotropic etching of (100) Si with ultrasonic agitation,
Sensors and Actuators A: Physical, 2002, Vol. 96, pp. 152-156.
12. Debnath K., Arimoto H., Husain M. K. [et al.]. Low-Loss Silicon Waveguides and Grating
Couplers Fabricated Using Anisotropic Wet Etching Technique, Frontiers in Materials, 2016,
Vol. 3, 10.
13. Gosalvez M.A., Nieminen R.M., Kilpinen P. [et al.]. Anisotropic wet chemical etching of crystalline
silicon: atomistic Monte-Carlo simulations and experiments, Applied Surface Science,
2001, Vol. 178, pp. 7-26.
14. Pautkin V.E., Abdullin F.A., Vergazov I.R. [i dr.]. Issledovanie travlenoy v rastvore gidroksida
kaliya poverkhnosti kremniya [Investigation of the silicon surface etched in a solution of
potassium hydroxide], Izvestiya vuzov. Priborostroenie [Izvestiya vuzov. Instrumentation],
2018, Vol. 61, No. 10, pp. 915-921.
15. Alvi P.A, Meel V.S., Sarita K. [et al.]. A study on anisotropic etching of (100) silicon in aqueous
KOH solution, Journal of Chemical Sciences, 2008, Vol. 6 (3), pp. 1168-1176.
16. Pal P., Sato K. Complex three dimensional structures in Si {100} using wet bulk micromachining,
Micromechanics and Microengineering, 2009, Vol. 19 (10), 105008.
17. Gusev E.Yu., Jityaeva J.Y., Ageev O.A. Effect of PECVD conditions on mechanical stress of
silicon films, Materials Physics and Mechanics, 2018, Vol. 37, No. 1, pp. 67-72.
18. Gusev E.Yu., Zhityaeva Yu.Yu., Kolomiytsev A.S. [i dr.]. Issledovanie rezhimov zhidkostnogo
travleniya zhertvennogo sloya SiO2 dlya formirovaniya mikromekhanicheskikh struktur na
osnove Si*/SiO2/Si [Investigation of the modes of liquid etching of the sacrificial SiO2
layer for the formation of micromechanical structures based on Si*/SiO2/Si], Izvestiya
YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 2 (163),
pp. 236-245.
19. Malokhatko S.V., Gusev E.Yu., Zhityaeva Yu.Yu. Proektirovanie i formirovanie kremnievykh
membran dlya akusticheskikh datchikov [The design and formation of the silica membranes
for acoustic sensors], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2019, No. 6 (208), pp. 53-61.
20. Iosub R., Moldovan C., Modreanu M. Silicon membranes fabrication by wet anisotropic etching,
Sensors and Actuators, 2002, Vol. 99, pp. 104-111.
Published
2021-02-13
Section
SECTION IV. ELECTRONICS, NANOTECHNOLOGY AND INSTRUMENTATION