IMPLEMENTATION OF INVERSE KINEMATIC PROBLEM OF SEISMIC EXPLORATION FOR MICROSEISMIC MONITORING ON RECONFIGURABLE COMPUTER SYSTEMS IN REAL TIME

  • I.I. Levin Southern Federal University
  • K.N. Alekseev Southern Federal University
Keywords: Microseismic monitoring, inverse kinematic problem, reconfigurable computer systems, FPGA, real-time problems

Abstract

The paper covers the possibility to create the digital hydrocarbon deposit models in real time on the basis of "passive" microseismic monitoring data. Processing of primary seismic data is impossible on multiprocessor computer systems of traditional architecture in real time because of a large amount of processed data; the complexity of storage organization of intermediate results; the labor-intensive operations. There is a different paradigm of computational process organiza-tion during the solution of labor-intensive tightly-coupled problems. It’s based on the synthesis of parallel-pipeline programs for reconfigurable computer systems (RCS). According to this ap-proach, the problem is presented as an information graph. The graph consist of a set of vertices (the performed operations), and a set of arcs describing the sequence of data transfer between the vertices, as well as input and output signals. Traditional methods of automatic synthesis of compu-tational structures involve the direct mapping of the information graph or part of it on the compu-tational field of RCS, constructed from a set of interconnected programmable logic integrated circuits (FPGAs). This approach is provided the maximum performance of the computer system, using all available hardware resources. However, the performance of the computer system is often higher than necessary at solving real-time problems on the RCS by traditional methods. It leads to overspending of the used RCS resource, the increased energy consumption and, as a result, the excessive cost of final product. In this regard, a new synthesis method of parallel-pipeline pro-grams for RCS was proposed for determining the minimum hardware resource at given solution time. According to the new approach, the information graph of the problem must be transformed in such a way that the synthesized computational structure has the required performance. The application of the new method was presented by the solution of the main computationally-laborious problem of microseismic monitoring: the inverse kinematic problem of seismic exploration. The estimation of the minimum hardware costs for a given solution time was given, and sev-eral configurations of RCS were proposed. Analysis of the results proved the effectiveness of the new approach application in comparison with traditional methods. Therefore, the new method of creating the parallel-pipeline programs for RCS can be used at solving the real-time problems.

References

1. Vnedrenie i ispol'zovanie tsifrovykh tekhnologiy v energetike iskhodya iz printsipov ekonomicheskoy tselesoobraznosti i povysheniya dostupnosti energeticheskoy infrastruktury i raspredelennoy energetiki [The introduction and use of digital technologies in the energy sec-tor based on the principles of economic feasibility and increasing the availability of energy in-frastructure and distributed energy], 2018. Available at: https://minenergo.gov.ru/node/10877 (accessed 14 November 2018).
2. Garichev S.N., Eremin N.A. Tekhnologiya upravleniya v rezhime real'nogo vremeni: ucheb. posobie [Real-Time Management Technology: tutorial]. Moscow: MFTI, 2015, Part 2, 312 p.
3. Betelin V.B. «TSifrovoe mestorozhdenie» – put' k trudnoizvlekaemym zapasam uglevodorodov [“Digital deposit” – the path to hard-to-recover hydrocarbon reserves], Innovatsii [Innovations], 2014, No. 1, pp. 37-38.
4. Shmakov F.D. Metodika obrabotki i interpretatsii dannykh nazemnogo mikroseysmicheskogo monitoringa GRP [Methods of processing and interpreting data of ground-based microseismic monitoring of hydraulic fracturing], Tekhnologii seysmorazvedki [Seismic technologies], 2012, No. 3, pp. 65-72.
5. Alsynbaev K.S., Kozlov A.V. Sredstva raspoznavaniya i vizualizatsii razlomov i zon tekhnogennoy treshchinovatosti na osnove obrabotki dannykh mikroseysmicheskogo monitoringa [Means of recognition and visualization of faults and zones of technogenic frac-turing based on the processing of microseismic monitoring data], Vestnik Baltiyskogo federal'nogo universiteta im. I. Kanta [Bulletin of the Baltic Federal University. I. Kant], 2014, No. 4, pp. 127-134.
6. Gapeev D.N., Erokhin G.N., Sedaykin R.D., Strokov V.I. Opyt primeneniya mikroseysmicheskogo monitoringa dlya kontrolya zavodneniya na mestorozhdenii Severnaya Truva [Experience of using microseismic monitoring to control flooding in a field Severnaya Truva], Vestnik Baltiyskogo federal'nogo universiteta im. I. Kanta [Bulletin of the Baltic Fed-eral University. I. Kant], 2015, No. 10, pp. 133-139.
7. Erokhin G.N., Alsynbaev K.S., Bryksin V.M., Savelenko V.V., Strokov V.I., Kozlov A.V., Kozlov M.V. Algoritmy interpretatsii i vizualizatsii rezul'tatov obrabotki dannykh postoyanno deystvuyushchego monitoringa mestorozhdeniy uglevodorodov [Algorithms of interpretation and visualization of data processing results of the ongoing monitoring of hydrocarbon depos-its], Marchukovskie nauchnye chteniya – 2017: Tr. mezhdunarodnoy nauchnoy konferentsii (g. Novosibirsk, 25 iyunya-14 iyulya 2017 g.) [Marchukovsky Scientific Readings – 2017: Proceedings of the international scientific conference (Novosibirsk, June 25-July 14, 2017). Novosibirsk: Institut vychislitel'noy matematiki i matematicheskoy geofiziki SO RAN, 2017, pp. 289-295.
8. Levin I.I. Metody i programmno-apparatnye sredstva parallel'nykh strukturno-protsedurnykh vychisleniy: diss. … d-ra tekhn. nauk, po spetsial'nostyam: 05.13.11 “Matematicheskoe i programmnoe obespechenie vychislitel'nykh mashin, kompleksov i komp'yuternykh setey”, 05.13.15 – “Vychislitel'nye mashiny i sistemy”. Nauchnye konsul'tanty: akademik RAN, d.t.n., prof. Kalyaev A.V., chl.-korr. RAN, d.t.n., prof. Kalyaev I.A., dis. sovet TRTU D 212.259.05, 2004 [Methods and software-hardware of parallel structural and procedural calculations: dr. of eng. sc. diss. by specialties: 05.13.11 “Mathematical and software of computers, complexes and computer networks”, 05.13.15 - “Computing machines and systems”, Scientific consult-ants: academician RAN, doctor of technical sciences, prof. Kalyaev A.V., Corr. RAN, Doctor of Technical Sciences, prof. Kalyaev I.A., dis. advice TRTU D 212.259.05, 2004], 363 p.
9. Kalyaev A.V., Levin I.I. Modul'no-narashchivaemye mnogoprotsessornye sistemy so strukturno-protsedurnoy organizatsiey vychisleniy [Modular stackable multiprocessor systems with structural and procedural organization of calculations]. Moscow: Izd-vo «YAnus-K», 2003, 380 p.
10. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoylov V.I. Rekonfiguriruemye mul'tikonveyernye vychislitel'nye struktury [Reconfigurable multi-pipeline computing structures]. 2nd ed., under total ed. I.A. Kalyaev. Rostov-on-Don: Izd-vo YuNTS RAN, 2009, 344 p.
11. Dordopulo A.I. Kalyaev I.A., Levin I.I., Semernikov E.A. Semeystvo mnogoprotsessornykh vychislitel'nykh sistem s dinamicheski perestraivaemoy arkhitekturoy [Family of multiproces-sor computing systems with dynamically tunable architecture], Mnogoprotsessornye vychislitel'nye i upravlyayushchie sistemy: Materialy nauchno-tekhnicheskoy konferentsii [Multiprocessor computing and control systems: Materials of scientific and technical confer-ence]. Taganrog, 2007, pp. 11-17.
12. Kalyaev I.A., Levin I.I., Semernikov E.A., Dordopulo A.I. Rekonfiguriruemye vychislitel'nye sistemy na osnove PLIS semeystva VERTEX-6 [Reconfigurable computer systems based on the FPGA of the VIRTEX-6 family], Parallel'nye vychislitel'nye tekhnologii (PAVT’2011): Tr. mezhdunarodnoy nauchnoy konferentsii [Parallel computing technologies (PAVT’2011): Proceedings of the international scientific conference], 2011, pp. 203-211.
13. Shmakov F.D., Bortnikov P.B. Reshenie obratnoy kinematicheskoy zadachi lokatsii istochnika seysmicheskogo izlucheniya dlya gorizontal'no-sloistoy sredy [The solution of the inverse kin-ematic problem of locating the source of seismic radiation for a horizontally layered medium], Vestnik yugorskogo gosudarstvennogo universitet [Bulletin of the Ugra State University], 2011, No. 3 (22), pp. 107-111.
14. Shmakov F.D. Programmnyy kompleks resheniya obratnykh kinematicheskikh zadach mikroseysmicheskogo monitoringa [Program complex for solving inverse kinematic problems of microseismic monitoring], Vestnik NGU. Seriya: Informatsionnye tekhnologii [Vestnik NSU. Series: Information Technology], 2010, Vol. 8, No. 2, pp. 34-42.
15. Glogovskiy V.M., Langman S.L. Svoystva resheniya obratnoy kinematicheskoy zadachi seysmorazvedki [Properties of the solution of the inverse kinematic problem of seismic pro-specting], Tekhnologii seysmorazvedki [Technologies of seismic exploration], 2009, No. 1, pp. 10-17.
16. Dugarov G.A., Obolentseva I.R., Chichinina T.I. Otsenka parametrov treshchinovatoy sredy po dannym ob anizotropii skorostey i pogloshcheniya seysmicheskikh voln [Estimation of param-eters of the fractured medium according to the data on anisotropy of velocities and absorption of seismic waves], Tekhnologii seysmorazvedki [Technologies of seismic exploration], 2011, No. 3, pp. 49-59.
17. SibGeofizPribor. Available at: http://www.sibgeodevice.ru/ (accessed 25 September 2018).
18. UltraScale FPGA. Product tables and product selection guide. Available at: https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf (accessed 25 September 2018).
19. Performance and Resource Utilization for Floating-point v7.1, 2018. Available at: https://www.xilinx.com/support/documentation/ip_documentation/ru/floating-point.html (ac-cessed 25 September 2018).
20. Sorokin D.A., Dordopulo A.I. Metodika sokrashcheniya apparatnykh zatrat v slozhnykh sistemakh pri reshenii zadach s sushchestvenno-peremennoy intensivnost'yu potokov dannykh [Technique of reducing hardware costs in complex systems when solving problems with a sub-stantially variable intensity of data flows], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 4 (129), pp. 213-219.
21. RCS «Tertsius». Available at: http://superevm.ru/index.php?page=tertsius (accessed 14 No-vember 2018).
Published
2019-04-04
Section
SECTION IV. RECONFIGURABLE AND NEURAL NETWORK COMPUTING SYSTEMS