THE ACOUSTO-OPTICAL DEFLECTORS OF THE AO CYMOMETER

  • A.V. Pomazanov Southern Federal University
  • D.P. Volik Southern Federal University
  • S.S. Shibaev Southern Federal University
Keywords: Acoustooptics, acoustooptic cymometer, acoustooptic deflector, Fourier-objective lens, photoreceiver, diffraction, AO measurer, laser, electrodynamical structure

Abstract

Methods of functional electronics, particularly acousto-optical (AO) method of radiosignal
processing, strongly lead even in comparison with DSP in cases requiring in minimum time period
in wide analysis band with high accuracy to measure frequency and time parameters of several
simultaneous signals. Development of new technologies and materials makes using the AO devices
more actual since, according to integral features (consumption power, sizes, mass), they take leading
places among other radiosignal parameters measurers types. AO cymometers as a kind of AO
measurers take their firm place in an equipment of radiosignals parameters evaluation due to
unique characteristics – multisignal mode, resolution, small sizes, acceptable input dynamic range
and frequency evaluation accuracy. These devices are capable to practically instantly translate
signals from time to frequency domain and find application in systems of passive radiocontrol
where important parameters are not only dynamic range, evaluation accuracy of frequency and
phase, but also energy consumption, mass and sizes that become considerable in mobile and space
measurement complexes. By this reason in many countries AO cymometers have been successfully
utilized in air and space engineering. Technical parameters of AO cymometers, such as band,
nonuniformity of working channel, AO interaction efficiency etc. are largely defined by parameters of
AOD (AO deflectors). Among all elements of AO device AOD are more expensive and together with
lasers and photoreceivers AOD manufacturing also requires high technologies applying. Along with
development and production not less important and technically complicated (that influences the AOD
cost) is the task of development of ways computation, control and measurement of OD parameters.
This work authors, being coworkers of laboratory "Nanophotonics and optoelectronics" of SFedU,
have solved the task of calculation of technical and technological parameters of AOD of two frequency
bands, have developed documentation, that allowed to manufacture several AOD samples, have
developed the system of testing, that have been carried out, and implemented the correction of AOD
electrodynamical structure parameters. Given are the parameters calculation and math modeling
AOD electrodynamical structure, the method of measuring the AOD parameters, the layout of
testing set. Also given the results of experimental investigations of developed AOD. Shown that
electrodynamical structure correction allows in constrained range to change the AOD parameters
and only adjusting capacitor does not allow to match parameters, but it is necessary to execute the
matching system topology correction. Theoretical calculations and modeling have been confirmed
by experimental results of manufactured AOD.

References

1. Ushakov V.N., Naumov K.P. Akustoopticheskie signal'nye protsessory [Acousto-optic signal
processors]. Moscow: Sayns-press, 2002, 80 p.
2. Shibaev S.S., Pomazanov A.V., Rozdobud'ko V.V. Akustoopticheskie izmeriteli parametrov
radiosignalov: monografiya [Acousto-optical measuring parameters of radio signals: monograph].
Rostov-on-Don: Izd-vo YuFU, 2014, 233 p.
3. Pomazanov A.V., Shibaev S.S., Volik D.P. Maket dvukhkanal'nogo malogabaritnogo
akustoopticheskogo chastotomera [The prototype of two-channel small-sized AO cymometer].
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2019, No. 5
(207), pp. 157-165.
4. Volik D.P., Shibaev S.S., Pomazanov A.V. Printsipy postroeniya i realizatsiya akustoopticheskikh
izmeriteley parametrov radiosignalov [The principles of construction and realization of the
acousto-optic measuring parameters of radio signals], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 175-182.
5. Pustovoyt V.I., Pozhar V.E. Akustoopticheskie spektral'nye ustroystva: sostoyanie i
perspektivy [Acoustooptic spectral devices: state and prospects], Vestnik MGTU im.
N.E. Baumana. Seriya“Priborostroenie” [Herald of the Bauman Moscow State Technical
University. Series Instrument Engineering], 2011, pp. 6-15.
6. Shibaev S.S., Volik D.P., Rozdobud'ko V.V. Akustoopticheskiy priemnik-chastotomer na osnove
deflektora s protivofaznym vozbuzhdeniem ul'trazvuka [Acoustooptic receiver-cymometer on the
base of deflector with anti-phase excitation of ultrasound], Izvestiya vuzov Rossii.
Radioelektronika [News of russian universities. Radioelectronics], 2008, Issue 4, pp. 32-37.
7. Volik D.P., Rozdobud'ko V.V. Analiz amplitudno-chastotnoy kharakteristiki
akustoopticheskogo deflektora s poverkhnostnym apodizirovannym p'ezopreobrazovatelem
[Analysis of amplitude-frequency response of AO deflector with surface apodized piezoelectric
transducer], Zhurnal tekhnicheskoy fiziki [Technical Physics Journal], 2009, Vol. 79,
No. 6, pp.124-128.
8. Shibaev S.S., Volik D.P., Novikov V.M., Pomazanov A.V. Akustoopticheskiy SVCh deflektor
[Acoustooptic SHF deflector], Patent na poleznuyu model [Patent on utility model], RU
145757 U1, 27.09.2014.
9. Vynnyk D.M., Reshotka O.G., Hajduchok V.G., Sugak D.Yu., Vakiv M.M. High frequency
acousto-optic deflectors with bulk waves excitation of piezoelectric crystals surface, Modern
information and electronic technologies, 2016, Vol. 1, No. 17, pp. 204-205.
10. Volik D.P., Rozdobud'ko V.V. Razrabotka i issledovanie akustoopticheskogo SHF deflektora s
sektsionirovannym poverkhnostnym p'ezopreobrazovatelem [Development and research of AO
SHF deflector with section surface piezoelectric transducer], Voprosy spetsialnoy
radioelektroniki [Questions of special radioelectronics], 2010, No. 2, pp. 110-122.
11. Akusticheskie kristally: Spravochnik [Acoustic crystals: Reference book], pod red.
M.I. Shaskolskoy. Moscow: Science, 1982, 632 p.
12. Magdich L.N., Molchanov V.Ya. Akustoopticheskie ustroystva i ikh primenenie [Acousto-optic
devices and their application]. Moscow: Radio i svyaz', 1978, 112 p.
13. Balakshiy V.I., Parygin V.N., Chirkov L.E. Fizicheskie osnovy akustooptiki [Physical basis of
acousto-optics]. Moscow: Radio i svyaz', 1985, 278 p.
14. Morozov A.I., Proklov V.V., Stankovskiy B.A. P'ezoelektricheskie preobrazovateli dlya
radioelektronnykh ustroystv [Piezoelectric transducers for radioelectronic devices]. Moscow:
Radio i svyaz', 1981, 184 p.
15. Krakovskiy V.A. Vozbuzhdenie ob'emnykh uprugikh voln s poverkhnosti p'ezocristallov
simmetrii 3m [Excitation of bulky elastic waves from surface of piezoelectric crystals of symmetry
3m], Izvestiya VUZov. Fizika [Izvestiya VUZov. Physics], 1997, Vol. 40, No. 5, pp. 27-34.
16. Cherne H.I. Induktivnye svyazi i transformatsii v elektricheskih filtrah [Inductive couples and
transformations in electric filters]. Moscow: Svyaz'izdat, 1962, 316 p.
17. Volman V.I. Spravochnik po raschyotu i konstruirovaniyu SVCh poloskovyh ustroistv [Reference
book on calculation and desighn of SHF strip devices], Moscow: Radio i svyaz', 1982,
326 p.
18. Matey G.L., Yang L., Dzhons M.T. Filtry SVCh, soglasuyuschiye tsepi i tsepi svyazi [Filters of
SHF, matching networks and couple networks], 1971. 439 p.
19. Shibaev S.S., Volik D.P. Avtomatizirovannyi stend dlya akustoopticheskih izmereniy [Automated
set for AO measurements], Pribory i tekhnika experimenta [Instrumentation and experiment
technique], 2014, No. 4, pp.141.
20. Shibaev S.S., Volik D.P. Avtomatizatsiya akustoopticheskih izmereniy [Automatization of AO
measurements], Spetsial'naya tekhnika [Instrumentation and experiment technique], 2014,
No. 2, pp. 32-36.
21. Shibaev S.S., Pomazanov A.V., Volik D.P. Metody i sredstva akustoopticheskih izmereniy:
uchebnoe posobie [Methods and means of acoustooptic measurements: tutorial], Rostov-on-
Don – Taganrog: Izd-vo YuFU, 2018, 124 p.
Published
2021-02-13
Section
SECTION III. PROCESS AND SYSTEM MODELING