COMPUTER METHOD FOR ANALYZING THE STABILITY OF DIFFERENTIAL EQUATIONS SYSTEMS

  • S.G. Bulanov Rostov State University of Economics
Keywords: Lyapunov stability, computer stability analysis, difference solutions of differential equations

Abstract

This article proposes approach to the stability analysis in the sense of Lyapunov for systems
of ordinary differential equations. The approach is based on stability criteria in the form of necessary
and sufficient conditions obtained on the basis of matrix multiplicative transformations of
difference schemes of numerical integration. The matrix, multiplicative form of criteria implies the
possibility of their cyclic program implementation in the form of a cycle by the number of multipliers.
It is mathematically proved that the replacement of an infinite matrix product with a finite
product, which is necessary in the programming process, preserves the certainty of the stability
analysis according to the proposed criteria. The dependence of the certainty of computer stability
analysis on the error of the difference solution of a system of ordinary differential equations is
investigated. In order to improve the accuracy of difference approximations of the solution and
linearization of the system, the method of variable piecewise polynomial approximation of the
solution is used. The method gives continuous and continuously differentiable approximations of
the desired solutions over the entire integration interval. The required approximations are obtained
on the basis of a piecewise-polynomial approximation by Newtonian interpolation polynomials
converted to the form of a polynomial with numerical coefficients. Computer approximation
of integrands increases the accuracy of integral calculation. This increases the accuracy of calculating
expressions in each multiplier of matrix products, and consequently increases the certainty
of analysis using stability criteria. A program and numerical experiment was conducted to analyze
the stability of the Lorentz system under given initial conditions and parameters changes. Based
on the numerical data obtained during the experiment, the stability nature of the system under
study is unambiguously established. In General, the proposed approach makes it possible to perform
a stability analysis arbitrary systems of ordinary differential equations in real time mode
without access to methods of the qualitative theory of differential equations and systems of computer
mathematics.

References

1. Mel'nikov G.I., Mel'nikov V.G., Dudarenko N.A., Talapov V.V. Ustoychivost' dvizheniya
nelineynykh dinamicheskikh sistem pri postoyanno deystvuyushchikh vozmushcheniyakh [Stability
of nonlinear dynamical system motion under constantly acting perturbations], Nauchnotekhnicheskiy
vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and technical
journal of information technologies, mechanics and optics], 2019, Vol. 19, No. 2, pp. 216-221.
2. Mironov V.V., Mitrokhin Yu.S. Tekhnologicheskiy podkhod k issledovaniyu ustoychivosti
dinamicheskikh sistem: prikladnye voprosy [Constructive approach to the research of dynamic systems
stability: applied problems], Vestnik RGRTU [Vestnik of RSREU], 2017, No. 59, pp. 127-135.
3. Aleksandrov A.Yu., Zhabko A.P., Kosov A.A. Analiz ustoychivosti i stabilizatsiya nelineynykh
sistem na osnove dekompozitsii [Analysis of stability and stabilization of nonlinear systems
via decomposition], Sibirskiy matematicheskiy zhurnal [Siberian mathematical journal], 2015,
Vol. 56, No. 6, pp. 1215-1233.
4. Hammarling S.J. Numerical solution of the stable, non-negative definite Lyapunov equation,
IMA J. of Num. Analysis, 1982, Vol. 2, Issue 3, pp. 303-323.
5. Luyckx L., Loccufier M., Noldus E. Computational methods in nonlinear stability analysis:
stability boundary calculations, J. Comput. Appl. Math., 2004, Vol. 168, Issue 12. pp. 289-297.
6. Giesl P., Hafstein S. Computation of Lyapunov functions for nonlinear discrete time systems
by linear programming, J. Difference Equ. Appl., 2014, Vol. 20, Issue 4, pp. 610-640.
7. Bulanov S.G. Analiz ustoychivosti sistem lineynykh differentsial'nykh uravneniy na osnove
preobrazovaniya raznostnykh skhem [Stability analysis of systems of linear differential equations
based on transformation of difference schemes], Mekhatronika, avtomatizatsiya,
upravlenie [Mekhatronika, Avtomatizatsiya, Upravlenie], 2019, Vol. 20, No. 9, pp. 542-549.
8. Romm Ya.E. Komp'yuterno-orientirovannyy analiz ustoychivosti na osnove rekurrentnykh
preobrazovaniy raznostnykh resheniy obyknovennykh differentsial'nykh uravneniy [Computeroriented
stability analysis based on recurrent transformation of difference solutions of ordinary
differential equations], Kibernetika i sistemnyy analiz [Cybernetics and Systems Analysis],
2015, Vol. 51, No. 3, pp. 107-124.
9. Romm Ya.E., Bulanov S.G. Komp'yuternyy analiz ustoychivosti po Lyapunovu sistem
lineynykh differentsial'nykh uravneniy [Computer analysis of Lyapunov stability for systems
of linear differential equations]. Taganrog: Izd-vo Taganrog. gos. ped. in-ta im.
A.P. Chekhova, 2012, 148 p.
10. Romm Ya.E. Komp'yuterno-orientirovannyy analiz ustoychivosti resheniy differentsial'nykh
sistem [Computer-oriented stability analysis of solutions of differential systems], Sovremennye
naukoemkie tekhnologii [Modern high technologies], 2020, No. 4, pp. 42-63.
11. Chezari L. Asimptoticheskoe povedenie i ustoychivost' resheniy obyknovennykh
differentsial'nykh uravneniy [Asymptotic Behavior and Stability Problems in Ordinary Differential
Equations]. Moscow: Mir, 1964, 478 p.
12. Demidovich D.P. Lektsii po matematicheskoy teorii ustoychivosti [Lectures on Mathematical
Theory of Stability]. Moscow: Nauka, 1967, 472 p.
13. Romm Ya.E., Bulanov S.G. Chislennyy eksperiment po komp'yuternomu analizu ustoychivosti
linearizovannykh sistem nelineynykh differentsial'nykh uravneniy [Numerical experiment on
computer analysis of stability of linearized systems of nonlinear differential equations], Dep. v
VINITI [Dep. in VINITI], 14.07.2016, No. 102, 18 p.
14. Bulanov S.G. Differential systems stability analysis based on matrix multiplicative criteria,
Journal of Physics: Conf. Series, 2020,1479 012103.
15. Barreau М., Seuret А., Gouaisbaut F., Baudouin L. Lyapunov stability analysis of a string
equation coupled with an ordinary differential system, IEEE Trans. Automatic Control, 2018.
available on HAL.
16. Baudouin L., Seuret A., Gouaisbaut F. Lyapunov stability analysis of a linear system coupled
to a heat equation, In 20th IFAC World Congress, Toulouse, 2017, Vol. 50, pp. 11978-11983.
17. Feng G. Stability Analysis of Piecewise Discrete-Time Linear Systems IEEE Trans, Automatic
Control, 2002, Vol. 47, Issue 7, pp. 1108-1112.
18. Romm Ya.E. Modelirovanie ustoychivosti po Lyapunovu na osnove preobrazovaniy
raznostnykh skhem resheniy obyknovennykh differentsial'nykh uravneniy [Modeling of stability
according to Lyapunov based on difference schemes transformations for solutions of ordinary
differential equations], Matematicheskoe modelirovanie [Mathematical Modeling], 2008,
Vol. 20, No. 12, pp. 105-118.
19. Bulanov S.G., Dzhanunts G.A. Programmnyy analiz ustoychivosti sistem obyknovennykh
differentsial'nykh uravneniy na osnove mul'tiplikativnykh preobrazovaniy raznostnykh skhem
i kusochno-polinomial'nykh priblizheniy resheniya [Program analysis of stability of ordinary
differential equations systems on the basis of multiplicative transformations of difference
schemes and piecewise polynomial approximations of the solution], Promyshlennye ASU i
kontrollery [Industrial Automatic Control Systems and Controllers], 2015, No. 2, pp. 10-20.
20. Dzhanunts G.A., Romm Ya.E. Var'iruemoe kusochno-interpolyatsionnoe reshenie zadachi Koshi
dlya obyknovennykh differentsial'nykh uravneniy s iteratsionnym utochneniem [The varying
piecewise interpolation solution of the Cauchy problem for ordinary differential equations with iterative
refinement], Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Computational
Mathematics and Mathematical Physics Journal], 2017, Vol. 57, No. 10, pp. 1641-1660.
21. Doban A., Lazar M. Computation of Lyapunov functions for nonlinear differential equations
via a Yoshizawa-type construction, 10th IFAC Symp. on Nonlinear Control Systems NOLCOS:
IFAC-PapersOnLine, 2016, pp. 29-34.
22. Zhaolu T., Chuanqing G. A numerical algorithm for Lyapunov equations, J. Appl. Math.
Comput., 2008, Vol. 202, Issue 1, pp. 44-53.
23. Xiao-Lin L., Yao-Lin J. Numerical algorithm for constructing Lyapunov functions of polynomial
differential systems, J. Appl. Math. Comput., 2009, Vol. 29, Issue 1-2, pp. 247-262.
24. Olgac N., Sipahi R. A practical method for analyzing the stability of neutral type LTI-time
delayed systems, Automatica, 2004, Vol. 40, Issue 5, pp. 847-853.
25. Hafstein S. A constructive converse Lyapunov theorem on asymptotic stability for nonlinear
autonomous ordinary differential equations, Dynamical Systems, 2005, Vol. 20, pp. 281-299.
Published
2021-02-13
Section
SECTION II. INFORMATION PROCESSING ALGORITHMS