RESTORATION OF DEFECTS AND BLIND ZONE ON IMAGES OF UNDERLYING SURFACE FOR ONBOARD RADAR SYSTEMS OF MAPPING BASED ON DOPPLER BEAM SHARPENING

  • R.R. Ibadov Southern Federal University
  • S.R. Ibadov Southern Federal University
  • V.P. Fedosov Southern Federal University
Keywords: Image recovery, doppler beam sharpening, local map, mapping, correlation, texture synthesis

Abstract

The problem of forming a radar image (RI) of the earth's surface in real time remains one of
the most urgent in solving radio imaging problems, despite the appearance of a large number of
publications in this area, reflecting a whole range of new methods and algorithms for processing
trajectory signals in order to improve the quality of images. The main goal in the formation of
radar images is to achieve the maximum resolution and image quality under real constraints associated
with the drift of the parameters of the received trajectory signal (synthesis time), measurement
inaccuracy and variability of flight characteristics (speed, acceleration, flight trajectory),
exposure to a wide range of noise and interference, both external and internal, against the background
of a low-power received signal from remote radio reflectors (energy resources). The article
investigates an algorithm for constructing and restoring images of the underlying surface and
develops its software implementation. The effectiveness of the new approach is shown using several examples for various areas of the underlying surface with a blind spot. The subject of the research
is methods and algorithms for constructing a terrain map and reconstructing lost image
areas. The research object is a set of test images. The result of the research is the development of a
method for image restoration in order to restore the lost area. The novelty of the work is an algorithm
that improves the quality of image restoration based on a neural network. The results obtained
make it possible to restore the areas. Evaluation of the efficiency of the image restoration
method was carried out using a statistical criterion - the root mean square error of the processing
result from the true image. As a result of solving the tasks, we can draw conclusions:  A method
was developed for constructing and restoring images of the underlying surface based on the
search for similar blocks with their subsequent combining by a neural network.  Analysis of the
results of the study showed that the proposed method improves the quality of image reconstruction.

References

1. Belyy Yu.I., Tagantsev V.A. Radiolokatsionnyy pritsel'nyy kompleks N001: modernizatsiya
prodolzhaetsya [Radar sighting complex N001: modernization continues], Radiotekhnika [Radio
engineering], 2005, No. 2, pp. 28-29.
2. Matveev A.M. Postroenie modeli i predobrabotka izobrazheniya podstilayushchey
poverkhnosti dlya radiolokatsionnykh sistem s doplerovskim obuzheniem lucha na osnove
informatsii, poluchaemoy o poverkhnosti v opticheskom diapazone [Construction of a model
and preprocessing of the image of the underlying surface for radar systems with Doppler beam
narrowing based on information obtained about the surface in the optical range], Elektronnyy
zhurnal [Electronic Journal], 2004.
3. Velichkin A.I., Karpov O.A., Talantsev V.V., Tolstov E.F. Povyshenie razreshayushchey
sposobnosti aviatsionnoy RLS pri nablyudenii vpered [Increasing the resolution of the aviation
radar when observing forward], Radiotekhnika [Radio Engineering], 1998, No. 12, pp. 12.
4. Kozaev A.A., Koltyshev E.E., Frolov A.Yu., Yankovskiy V.T. Algoritm doplerovskogo
izmereniya skorosti v RLS s sintezirovannoy aperturoy [Algorithm of Doppler velocity measurement
in a radar with a synthesized aperture], Radiotekhnika [Radio Engineering], 2005,
No. 6, pp. 13-16.
5. Antipov V.N., Suslyakov D.Yu. Kartografirovanie i obnaruzhenie nazemnykh dvizhushchikhsya
tseley [Mapping and detection of ground-based moving targets], Radiotekhnika [Radio Engineering],
2005, No. 6, pp. 10-12.
6. Vityazev V.V., Kolod'ko G.N., Vityazev S.V. Sposoby i algoritmy formirovaniya radiolokatsionnogo
izobrazheniya v rezhime doplerovskogo obuzheniya lucha [Methods and algorithms
for the formation of a radio-location image in the mode of Doppler beam narrowing],
Tsifrovaya obrabotka signalov [Digital signal processing], 2006, No. 3, pp. 31-41.
7. Vityazev V.V., Vityazev S.V., Zaytsev A.A. Mnogoskorostnaya obrabotka signalov:
retrospektiva i sovremennoe sostoyanie (Ch. 1) [Multi rate signal processing: a retrospective
and current status (Part 1)], Tsifrovaya obrabotka signalov [Digital signal processing], 2008,
No. 1, pp. 12-21.
8. Vityazev V.V., Vityazev S.V. Metody sinteza uzkopolosnogo adaptivnogo KIKH-fil'tra na
osnove mnogoskorostnoy obrabotki [Methods of synthesis of a narrow-band adaptive FIR filter
based on multi-speed processing], Tsifrovaya obrabotka signalov [Digital signal processing],
2007, No. 4, pp. 13.
9. Marchuk V.I., Voronin V.V., Sherstobitov A.I. Metod vosstanovleniya znacheniy dvumernykh
signalov na osnove sinteza tekstury i struktury izobrazheniy [A method for recovering the values
of two-dimensional signals based on the synthesis of the texture and structure of images],
Elektrotekhnicheskie i informatsionnye kompleksy i sistemy [Electrotechnical and information
complexes and systems], 2010, Vol. 6, No. 2.
10. Marchuk V.I., Voronin V.V., Frants V.A. Modifitsirovannyy metod vosstanovleniya
dvumernykh signalov [A modified method for restoring two-dimensional signals], Nauchnotekhnicheskie
vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo
universiteta. Informatika. Telekommunikatsii. Upravlenie [Scientific and Technical Bulletin of
the St. Petersburg State Polytechnic University. Computer science. Telecommunications.
Management], 2011, No. 1 (115).
11. Voronin V.V., Frants V.A., Gapon N.V., Fisunov A.V. Algoritm rekonstruktsii fona
videosignalov [Algorithm for reconstructing the background of video signals], Sovremennoe
sostoyanie estestvennykh i tekhnicheskikh nauk [The current state of natural and technical sciences],
2013, pp. 63-67.
12. Liu G., Reda F. A., Shih K.J., Wang T.C., Tao A., Catanzaro B. Image inpainting for irregular
holes using partial convolutions, Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 85-100.
13. Yu J., Lin Z., Yang J., Shen X., Lu X., Huang, T.S. Generative image inpainting with contextual
attention, Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 5505-5514.
14. Voronin V.V., Sizyakin R., Marchuk V.I., Yigang Cen, Galustov G., Egiazarian K.O. Video
inpainting of complex scenes based on local statistical model, IS&T International Symposium
on Electronic Imaging. Image Processing 2016, pp. 1-6.
15. Gapon N., Ponamorenko M., Pismenskova M., Tokareva O. Image inpainting using a neural
network, MATEC Web of Conferences. EDP Sciences, 2017, Vol. 132, pp. 05015.
16. Voronin V.V., Marchuk V.I., Sherstobitov A.I., Semenishchev E.A., Frantc V.A. Image reconstruction
on the basis of a textural geometrical model, Pattern Recognition and Image Analysis,
2015, Vol. 25, No. 3, pp. 553-562.
17. Gapon N.V., Voronin V.V., Sizyakin R.A., Pis'menskova M.M., Ibadov R.R. Issledovanie
vozmozhnosti szhatiya tsifrovykh izobrazheniy na osnove podkhodov rekonstruktsii
dvumernykh signalov [Investigation of the possibility of digital image compression based on
two-dimensional signal reconstruction approaches], Dinamika tekhnicheskikh system [Dynamics
of technical systems], 2017, pp. 73-78.
18. Ibadov R.R., Ibadov S.R., Voronin V.V., Fedosov V.P. Modifitsirovannyy metod rekonstruktsii
izobrazheniy na osnove poiska podobnykh oblastey [Modified image reconstruction method
based on the search for similar areas], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU.
Engineering Sciences], 2017, No. 6 (191), pp. 179-189.
19. Ibadov R.R., Ibadov S.R., Meleshkin S.N., Fedosov V.P. Vosstanovlenie povrezhdennykh
uchastkov izobrazheniy metodom sinteza tekstur [Restoration of damaged areas of images by
the method of texture synthesis], Radiolokatsiya, navigatsiya, svyaz' [Radar, navigation, communication],
2020, Vol. 2, pp. 113-118.
20. Ibadov R.R., Fedosov V.P., Voronin V.V., Ibadov S.R. Issledovanie metoda sinteza tekstur
izobrazheniy poverkhnosti zemli na osnove neyronnoy seti [Study of the method of synthesis
of textures of images of the earth's surface based on a neural network], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2019, No. 5 (207), pp. 16-25.
21. Ibadov R.R., Fedosov V.P., Ibadov S.R., Kucheryavenko S.V. Recovering lost areas of the underlying
image surface using a method based on similar blocks, AIP Conference Proceedings,
2019, Vol. 2188, pp. 050001.
22. Ibadov R.R., Fedosov V.P., Ibadov S.R., Gapon N.V., Sizyakin R.A. Restoration of the Lost
Map Area of the Underlying Image Surface Using the Reconstruction Method, EPJ Web of
Conferences, 2019, Vol. 224, pp. 04003.
23. Fedosov V.P., Ibadov R.R., Ibadov S.R., Voronin V.V. Restoration of the Blind Zone of the
Image of the Underlying Surface for Radar Systems with Doppler Beam Sharpening, Radiation
and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2019, pp. 424-427.
24. Ibadov R.R., Ibadov S.R., Voronin V.V., Fedosov V.P. Algoritm korrektsii kontrastnosti
izobrazheniy v teplovom diapazone [The correction algorithm of the contrast of the images in
the thermal range], Radiolokatsionnye sistemy spetsial'nogo i grazhdanskogo naznacheniya
[Radar system for military and civilian use], 2018, No. 1, pp. 381-385.
25. Ibadov R.R., Ibadov S.R., Gapon N.V., Tokareva O.A., Alepko A.V. Research the textures synthesis
method based on the neural network, Matec. Web of Conferences, 2018, Vol. 226, pp. 04043.
Published
2021-02-13
Section
SECTION I. COMMUNICATIONS, NAVIGATION, AND RADAR