THE STRUCTURE OF CUBATURE FORMULAS MODELLING FOR THE EFFICIENT FPGA IMPLEMENTATION
Abstract
In the paper we present the new computing models for the common cubature formulas computing
unit design and optimization. The basis of new modeling technique is related with the space
granulation theory, developed in our recent papers. The Spatial Granulation Technique allows us
to pass from computing in the metrical data points space to affine data space, contains the aggregated
data units named as granules. The introduced data transformation based on the affineinvariant
Cartesian granule model and on the optimal data points coarsening procedures. The
useful properties of new data models allows to provide the very efficient multivariable data management
procedures. The one of them is the multivariate cubature formulas calculation. The new
theory provides the obvious matrix data processing models for the information graphs design andoptimization. We can perform the equivalent mappings for the complicated information graph
models for the efficient structures matching. Optimized models of information graphs are used for
the FPGA-based devices implementation. The main problem of FPGA design is the commutation
structures complication for the large FPGA fields, obtained as the basic units for the reconfigurable
cubature formulas computing units. In this work we use the high-level programming language
COLAMO and assembler language Fire Constructor for the computing units implementation. As a
result of new technique implementation we can provide the family of adequate and useful graphic
representation for a multivariable cubature formulas over the matrix calculation. The provided
models are suitable for the optimal design of configurable computing structures, universal and
dedicated devices from the FPGA basis. For the device implementation the developed high-level
software products are used. For the designed universal devices the testing procedures was performed
and examined with the symbolic calculation software for the computing results evaluation.
References
formulas and Haar functions]. Moscow: Nauka, 1969, 288 p.
2. Zaliznyak V.E. Osnovy nauchnykh vychisleniy: Vvedenie v chislennye metody dlya fizikov
[Basics of Scientific Computing: Introduction to Numerical methods for the Physicists]. Moscow:
Editorial URSS, 2002, 378 p.
3. Samarskiy A.A., Mikhaylov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery
[Mathematical Modelling: Basic issues, Techniques, Examples]. 2nd ed. Moscow: Fizmatlit,
2001, 320 p.
4. Butenkov S.A. Krivsha N.S., Krivsha V.V. Sovremennye protsedury analiza mnogomernykh
dannykh [The Contemporary Techniques of Multivariable Data Analysis], Sovremennoe
sostoyanie estestvennykh i tekhnicheskikh nauk [Contemporary issues of Natural and Technical
Sciences], 2015, Issue XIX, pp. 75-76.
5. Rogozov Yu.I., Butenkov S.A., Nagorov A.L., Beslaneev Z.O. Modeli dannykh na osnove teorii
informatsionnoy granulyatsii [Data models based on Information Granulation Theory], Cb.
trudov Pyatoy Mezhdunarodnoy konferentsii «Sistemnyy analiz i informatsionnye tekhnologii»
SAIT-2013, Krasnoyarsk, 19-25 sentyabrya 2013 g. [System Analysis and Information Technologies
» SAIT-2013, Krasnoyarsk, September 19-25, 2013], Vol. 2, pp. 395-398.
6. Butenkov S.A., Nagorov A.L., Beslaneev Z.O. Geometricheskiy podkhod k postroeniyu
modeley dannykh na osnove teorii granulyatsii [Basics of geometrical approach to the granulated
data models], Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta
[Bulletin of Dagestan State Technical University], 2014, No. 1. Vol. 32, pp. 47-55.
7. Barskiy A.B. Parallel'nye protsessy v vychislitel'nykh sistemakh. Planirovanie i organizatsiya
[The Parallel Computational Processes: Scheduling and Organization]. Moscow: Radio i
svyaz', 1990, 256 p.
8. Butenkov S.A. Strukturnaya organizatsiya granulirovannykh vychisleniy pri obrabotke dannykh
na rekonfiguriruemykh vychislitel'nykh sistemakh [The structure of granular computing units for
the data processing on the configurable computers], Izvestiya YuFU: Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2018, No. 8 (202), pp. 250-262.
9. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoylov V.I. Rekonfiguriruemye mul'tikonveyernye
vychislitel'nye struktury [Configurable multi-conveyer computing structures]. Rostov-on-Don:
Izd.-vo YuNTS RAN, 2009, 344 p.
10. Butenkov S., Zhukov A., Nagorov A., Krivsha N. Granular Computing Models and Methods
Based on the Spatial Granulation, XII Int. Symposium «Intelligent Systems», INTELS’16, 5-7 October
2016, Moscow, Russia. Elsevier Procedia Computer Science, 2017, Vol. 103, pp. 295-302.
11. Butenkov S.A. Vysokoproizvoditel'nye tekhnicheskie sredstva i metody dlya
rekonfiguriruemykh vychislitel'nykh sistem v optiko-elektronnykh sistemakh obrabotki
dannykh [High performance devices and techniques for the reconfigurable computers in optical
data processing systems], Mater. V Mezhdunarodnoy nauchno-prakticheskoy
konferentsii «Aktual'nye voprosy issledovaniy v avionike: teoriya, obsluzhivanie,
razrabotki» – «AVIATOR», 15-16 fevralya 2018 g., VUNTS VVS «VVA im. prof. N.E.
Zhukovskogo i Yu.A. Gagarina» (g. Voronezh) [In Proc. of V International Conference
«Topical Questions of Investigations in Avionics: Theory, Design and Maintenance» –
«AVIATOR», February 15-16, 2018, Air Force Academy named after N.E. Zhukovskij and
Y.A. Gagarin (Voroneg, Russia)], pp. 112-114.
12. Levin I.I., Dordopulo A.I., Gudkov V.A. Programmirovanie rekonfiguriruemykh vy-chislitel'nykh
uzlov na yazyke COLAMO: ucheb. posobie [Programming for the Reconfigurable Computers on
COLAMO language: the Tutoruial]. Rostov-on-Don: Izd-vo YuFU, 2016, 114 p.
13. Butenkov S.A., Semernikov E.A. Optimizatsiya proektirovaniya vychislitel'nykh sistem
real'nogo vremeni na osnove modeley massovogo obsluzhivaniya [Real-Time Computers Optimization
Based on the Queuing Theory Models], Mater. Tret'ey Vse-rossiyskoy nauchnotekhnicheskoy
konferentsii “Superkomp'yuternye tekhnologii” (SKT-2014), Gelendzhik, 29
sentyabrya – 4 oktyabrya 2014 g. [In Proc. of III All-Russian Scientific Conference “Supercomputing
Techniques ” (SCT-2014), Gelendgik, September 29 – October 4, 2014]. Rostovon-
Don: Izd-vo YuFU, 2014, Vol. 1, pp. 30-35.
14. Butenkov S.A., Zhukov A.L. Informatsionnaya granulyatsiya na osnove izomorfizma
algebraicheskikh sistem [Information granulation based on the algebraic systems isomorphism],
Sb. trudov Mezhdunarodnoy algebraicheskoy konferentsii, posvyashchennoy 80-letiyu so dnya
rozhdeniya A.I. Kostrikina, Nal'chik, 12-18 iyulya 2009 g. [Proc. of Annual international algebraic
conf. dedicated to A.I. Kostrikin jubilee, Nalchik, July 12-18, 2009], pp. 206-209.
15. Butenkov S.A. Granulyatsiya i inkapsulyatsiya v sistemakh effektivnoy obrabotki
mnogomernoy informatsii [Multivariable Data Processing by the Granulation and Encapsulation],
Iskusstvennyy intellect [Artificial Intelligence], 2005, No. 4, pp. 106-115.
16. Butenkov S., Zhukov A., Nagorov A., Krivsha N. Granular Computing Models and Methods
Based on the Spatial Granulation, XII Int. Symposium «Intelligent Systems», INTELS’16, 5-7 October
2016, Moscow, Russia. Elsevier Procedia Computer Science, 2017, Vol. 103, pp. 295-302.
17. Yao Y.Y. Granular computing: basic issues and possible solutions, Proceedings of the 5th Joint
Conference on Information Sciences, 2000, pp. 186-189.
18. Pedrysz W. Granular Computing – the emerging paradigm, Journal of Uncertain Systems,
2007, Vol. 1, No. 1, pp. 38-61.
19. Butenkov S.A., Krivsha V.V., Krivsha N.S., Semenenko A.V. Matematicheskie osnovy
granuliruyushchego podkhoda k modelirovaniyu protsessov obrabotki dannykh na supervychislitel'nykh
sistemakh [Mathematical Issues of Granulated Data Models for the Supercomputing
Processing], Mater. Pervoy Vserossiyskoy konferentsii «Aktual'nye problemy
matematiki i informatsionnykh tekhnologiy», Makhachkala, 3–5 fevralya 2020 g. [In Proc. of
I All-Russian Conference «Topic Problems of Mathematics and Information Technologies»,
Mahachkala, February 3–5, 2020]. Makhachkala: Izd-vo DGU, 2020, pp. 54-58.
20. Butenkov S.A., Krivsha N.S., Krivsha V.V. Chislennye metody i matematicheskie modeli
granulirovannykh vychisleniy [Numerical method and models of granular computing], Mater.
XXII Mezhdunarodnoy nauchno-prakticheskoy konferentsii “Academic Science – Problems
and Achievements”, North Charleston, USA, February 17–18, 2020 [Proc. of XXII International
conf. “Academic Science – Problems and Achievements”, North Charleston, USA, February
17–18, 2020]. Lulu Press, Inc., 627 Davis Drive, Suite 300, Morrisville, NC, USA,
27560, pp. 49-51.
21. Butenkov S.A. Metody informatsionnoy granulyatsii v parallel'nykh vychisleniyakh [Information
granulation approach for the parallel computers], Mater. 3-y Vserossiyskoy nauchnotekhnicheskoy
konferentsii «SKT-2014», 29 sentyabrya-4 oktyabrya 2014 g., Divnomorskoe,
Gelendzhik [Proc. of 3-rd All-Russian Conference «SCT-2014», September 29 – October 4,
2014 г., Gelendgik], Vol. 1, pp. 99-104.
22. Butenkov S.A., Nagorov A.L., Beslaneev Z.O., Khatuntsev V.N. Geometricheskiy podkhod k
otsenke kvadraturnykh formul na granulirovannykh modelyakh [Geometrical Approach to the
Quadrature Formulas over the Granulated Data Evaluation], Izvestiya Kabardino-Balkarskogo
Gosudarstvennogo universiteta [Bulletin of Kabardino-Balkarian State University], 2014,
Vol. IV, No. 2, pp. 17-22.