STUDY OF PARALLEL SOLUTION ORGANIZATION FOR EXTERNAL AERODYNAMICS PROBLEMS BASED ON SPLITTING SCHEMES

  • V.V. Semenistyy Southern Federal University
  • I. E. Gamolina Southern Federal University
Keywords: Parabolized system of Navier-Stokes equations, splitting methods, organization of parallel computations, time calculation estimates of the algorithm

Abstract

The aim of this work is to study the ways to organize parallel solutions of external aerodynamics
problems. A hybrid parallel-conveyor method for numerical solution of two-dimensional
problems is considered. It allows to simulate the flow of viscous compressible fluids around objects
of complex shape. A parabolized system of Navier-Stokes equations is considered, for the
numerical solution a finite-difference algorithm is chosen. Due to its features (cost-effectiveness
and stability in the study of boundary layers of moving bodies) this algorithm was preferred. To
implement a nonlinear finite-difference scheme, the internal iterations are used in each main section.
The developed parallel algorithm consists constructively of nested iterative loops. The system
of equations is solved at each internal iteration. It is organized in two stages. At the first stage the
equations of motion are solved; at the second stage the density is determined. At each fractional
step of the internal iteration, one-dimensional data arrays are calculated. The paper uses the
method of splitting the operator by physical processes. For the numerical solution of the problem,
the factorization of the stabilizing operator is carried out. The scheme of the organization of the
process of problem solving is given in each internal iteration. The paper proposes the principle of
organizing parallel computing. The internal parallelism of the physical problem is used here.
To implement the parallel algorithm, a computing environment is specially selected. It contains a
decisive field of computing devices connected by switching connections, each of computing device
has its own RAM. Besides computing environment contains a control device. The parallel algorithm
uses a communication topology between worker processors. Reducing the dimension of the
problem (to 2d) allows to save time on data exchange between the processors. In this paper, time
estimates of the effectiveness of the developed parallel algorithm for each internal iteration are
carried out. The use of the parallel run method and the proposed principle of organizing parallel
calculations allow to increase the effectiveness of solving problems of such class.

References

1. Voevodin V.V., Voevodin Vl.V. Parallel'nye vychisleniya [Parallel computing]. Saint Petersburg:
BKhV-Peterburg, 2002, 608 p.
2. Voevodin V.V. Modeli i metody v parallel'nykh protsessakh [Models and methods in parallel
processes]. Moscow: Nauka, 1986, 206 p.
3. Miller R., Bokser L. Posledovatel'nye i parallel'nye algoritmy: Obshchiy podkhod [Serial and
parallel algorithms: General approach]. Moscow: Binom. Laboratoriya znaniy, 2006, 406 p.
4. Meleshko S.V., Chernyy S.G. Issledovanie vyazkikh szhimaemykh techeniy na osnove
parabolizovannykh uravneniy Nav'e–Stoksa [Investigation of viscous compressible flows based on
parabolized Navier-Stokes equations]. Novosibirsk, 1985, 48 p. (Preprint/ITPM SB RAS; No. 32-85).
5. Kovenya V.M., CHernyy S.S. Marshevyy metod resheniya statsionarnykh uproshchennykh
uravneniy Nav'e–Stoksa [Marching method for solving stationary simplified Navier-Stokes
equations], Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of Computational
Mathematics and Mathematical Physics], 1983, Vol. 23, No. 5, pp. 1186-1189.
6. Kovenya V.M., Yanenko N.N. Metod rasshchepleniya v zadachakh gazovoy dinamiki [Splitting
method in gas dynamics problems]. Novosibirsk: Nauka, 1981, 304 p.
7. Gerkel' V.P. Teoriya i praktika parallel'nykh vychisleniy: ucheb. posobie [Theory and practice of
parallel computing: a textbook]. Moscow: Intuit, BINOM. Laboratoriya znaniy, 2016, 423 p.
8. Kovenya V.M. Algoritmy rasshchepleniya pri reshenii mnogomernykh zadach
aerogidrodinamiki [Splitting algorithms for solving multidimensional problems of
aerohydrodynamics]. Novosibirsk. Izd-vo SO RAN. 2014, 280 p.
9. Yanenko N.N., Konovalov A.N., Bugrov A.N., Shustov G.V. Ob organizatsii parallel'nykh
vychisleniy i rasparallelivanie progonki [On the organization of parallel calculations and parallelization
of the run], Chislennye metody mekhaniki sploshnykh sred [Numerical methods of
continuum mechanics], 1978, No. 7, pp. 136-139.
10. Semenistyy V.V., Gamolina I.E., Duryagina V.V. Konstruirovanie effektivnykh parallel'nykh
algoritmov dlya resheniya polnoy dvumernoy sistemy uravneniy Nav'e-Stoksa po yavnoy
skheme Mak-Kormaka [Designing effective parallel algorithms for solving a complete twodimensional
system of Navier-Stokes equations according to the explicit McCormack scheme],
Sb. materialov II mezhdunarodnoy nauchno-prakticheskoy konferentsii «Issledovaniya i
razrabotki v perspektivnykh nauchnykh oblastyakh» [Collection of materials of the II International
Scientific and Practical Conference "Research and Development in promising scientific
fields"]. Novosibirsk, 2017, pp. 88-95.
11. Semenistyy V.V., Gamolina I.E., Duryagina V.V, Bogdanov D.S. Modelirovanie i analiz
parallel'nogo algoritma resheniya zadachi obtekaniya ploskoy plastiny metodom global'nykh
iteratsiy [Modeling and analysis of a parallel algorithm for solving the problem of flow around
a flat plate by the method of global iterations], Sb. materialov XIII mezhdunarodnoy nauchnoprakticheskoy
konferentsii. CH. 1 «Voprosy sovremennoy nauki: problemy, tendentsii,
perspektivy» [Collection of materials of the XIII International Scientific and Practical Conference.
Part 1 "Issues of modern science: problems, trends, prospects"]. Moscow: Nauchnyy
zhurnal «Chronos», 2017, pp. 79-85.
12. Semenistyy V.V., Gamolina I.E., Duryagina V.V. Otsenka effektivnosti pryamykh parallel'nykh
metodov dlya zadachi techeniya sovershennogo gaza po kanalu peremennogo secheniya
[Evaluation of the effectiveness of direct parallel methods for the problem of perfect gas flow
through a channel of variable cross-section], Mater. XIV Vseros. nauchn.-prakt. konf.,
15 iyunya 2018 g. [Proceedings of the XIV All-Russian Scientific and Practical Conference,
June 15, 2018]. Krasnodar: Krasnodarskiy universitet MVD Rossii, 2018, pp. 250-256.
13. Kovenya V.M. Ob odnom algoritme resheniya uravneniy Nav'e–Stoksa vyazkoy
neszhimaemoy zhidkosti [On an algorithm for solving the Navier-Stokes equations of a viscous
incompressible fluid], Vychislitel'nye tekhnologii [Computing technologies], 2006,
Vol. 11, No. 2, pp. 39-51.
14. Bogachev K.Yu. Osnovy parallel'nogo programmirovaniya [Fundamentals of parallel programming].
Moscow: Binom. Laboratoriya znaniy, 2003, 344 p.
15. Bazovkin A.V., Kovenya V.M. Rasparallelivanie algoritma rasshchepleniya na
mnogoprotsessornykh sistemakh pri modelirovanii techeniy vyazkoy neszhimaemoy zhidkosti
[Parallelization of the splitting algorithm on multiprocessor systems in the simulation of viscous
incompressible fluid flows], Vestnik NGU. Seriya: Matematika, mekhanika, informatika [Bulletin
of NSU. Series: Mathematics, Mechanics, Computer science], 2013, Vol. 13, Issue 4, pp. 3-15.
16. Gamolina I.E., Semenistyy V.V. Parallel'naya organizatsiya vychisleniy pri raschete zadach
aerogidrodinamiki pryamymi metodami. Mezhdunarodnoe nauchnoe sotrudnichestvo,
obrazovanie i kul'tura [Parallel organization of calculations in the calculation of problems of
aerohydrodynamics by direct methods. International scientific cooperation, education and culture].
Rostov-on-Don: Summa-Rerum, 2014, pp 3 (4).
17. Gamolina I.E., Duryagina V.V., Semenistyy V.V. Dozvukovoe obtekanie profiley [Subsonic
flow around profiles], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2013, No. 4, pp. 61-67.
18. Terenkov V.I., Arsenii V.F., Evseev E.G., Lutskiy Ya.A., Semenistyy V.V. O korrektnosti i
ustoychivosti algoritma rasparallelivaniya progonki [On the correctness and stability of the
parallelization algorithm of the run], Tr. int-ta prikl. matemat. im. I.N. Vekua Tbilis. un-ta
[Proceedings of the I.N. Vekua Institute of Applied Mathematics]. Tbilisi, 1985, pp. 298-307.
19. Degi D.V., Starchenko A.V. Chislennoe reshenie uravneniy Nav'e-Stoksa na komp'yuterakh s
parallel'noy arkhitekturoy [Numerical solution of the Navier-Stokes equations on computers with
parallel architecture], Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika
[Bulletin of Tomsk State University. Mathematics and mechanics], 2012, No. 2 (18), pp. 88-98.
20. Dongarra J., Foster I., Fox J. et al. Sourcebook of Parallel Computing. San Francisсo (CA,
USA): Elsevier Science, 2003, 852 p.
Published
2021-01-19
Section
SECTION I. INFORMATION PROCESSING ALGORITHMS