LOGICAL RESYNTHESIS OF COMBINATIONAL CIRCUITS FOR RELIABILITY INCREASE

  • N. O. Vasilyev The Institute for Design Problems in Microelectronics (IPPM RAS)
  • M.A. Zapletina The Institute for Design Problems in Microelectronics (IPPM RAS)
  • G. A. Ivanova The Institute for Design Problems in Microelectronics (IPPM RAS)
  • A.N. Schelokov The Institute for Design Problems in Microelectronics (IPPM RAS)
Keywords: Resynthesis, fault tolerance, reliability, combinational circuits, logic correlations, resolutions method

Abstract

The external influences are necessary to take into account for microelectronic devices operating
in space. In these conditions, the operation of the device is hampered by the negative
effect of radiation on the electronic components of the circuit. Exposure of heavy charged part icles
leads to single faults of logic elements due to which the operation of a whole device can be
violated. In this regard, the designed spacecraft electronic circuits must meet increased r equirements
for the fault tolerance of integrated circuits (ICs). The decrease of technological
design standards for ICs makes the problem of fault tolerance to be relevant for civilian microelectronic
products, also. The solution to this problem is usually carried out by methods of
hardware protection, which include methods of error-correcting coding, methods of redundancy,
as well as methods of logical protection. The paper considers the methods for assessing the
IC tolerance to single faults in logic elements, as well as the main methods of circuits failure
protection. The paper proposes a resynthesis technique for logical combinational circuits, using
logical constraints derived from the resolution method to assess the IC resistance to single faults.During resynthesis, it is proposed to use the methods of logical protection of vulnerable parts of
the circuit. This does not cause a perceptible increase in the area occupied by the device unlike in
methods of redundancy and error-correcting coding.

References

1. Mahatme N.N. et al. Impact of technology scaling on the combinational logic soft error rate,
2014 IEEE international reliability physics symposium. IEEE, 2014, pp. 5F. 2.1-5F. 2.6.
2. Heath J.R. et al. A defect-tolerant computer architecture: Opportunities for nanotechnology,
Science, 1998, Vol. 280, No. 5370, pp. 1716-1721.
3. Hu Y. et al. Robust FPGA resynthesis based on fault-tolerant Boolean matching, 2008
IEEE/ACM International Conference on Computer-Aided Design. IEEE, 2008, pp. 706-713.
4. Luckenbill S. et al. RALF: Reliability analysis for logic faults–An exact algorithm and its applications,
2010 Design, Automation & Test in Europe Conference & Exhibition (Date 2010).
IEEE, 2010, pp. 783-788.
5. Han J. et al. Reliability evaluation of logic circuits using probabilistic gate models, Microelectronics
Reliability, 2011, Vol. 51, No. 2, pp. 468-476.
6. Stempkovskiy A.L., Tel'pukhov D.V., Solov'ev R.A., Tel'pukhova N.V. Issledovanie
veroyatnostnykh metodov otsenki logicheskoy uyazvimosti kombinatsionnykh skhem [Investigation
of probabilistic methods for evaluating the logical vulnerability of combinational
schemes], Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES) (IF
0,034) [Problems of development of advanced micro- and nanoelectronic systems (MES) (IF
0,034)], 2016, No. 4, pp. 121-126.
7. Glebov A. et al. False-noise analysis using logic implications, IEEE/ACM International Conference
on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers
(Cat. No. 01CH37281). IEEE, 2001, pp. 515-521.
8. Gavrilov S.V. Metody analiza logicheskikh korrelyatsiy dlya SAPR tsifrovykh KMOP SBIS:
ucheb. posobie [Methods for analyzing logical correlations for CAD digital CMOS VLSI:
textbook], 2011.
9. Robinson J.A. A machine-oriented logic based on the resolution principle, Journal of the ACM
(JACM), 1965, Vol. 12, No. 1, pp. 23-41.
10. Lyons R.E., Vanderkulk W. The use of triple-modular redundancy to improve computer reliability,
IBM journal of research and development, 1962, Vol. 6, No. 2, pp. 200-209.
11. Kastensmidt F.L. et al. On the optimal design of triple modular redundancy logic for SRAMbased
FPGAs, Design, Automation and Test in Europe. IEEE, 2005, pp. 1290-1295.
12. Samudrala P.K., Ramos J., Katkoori S. Selective triple modular redundancy (STMR) based
single-event upset (SEU) tolerant synthesis for FPGAs, IEEE transactions on Nuclear Science,
2004, Vol. 51, No. 5, pp. 2957-2969.
13. Hamamatsu M., Tsuchiya T., Kikuno T. On the reliability of cascaded TMR systems, 2010
IEEE 16th Pacific Rim International Symposium on Dependable Computing. IEEE, 2010,
pp. 184-190.
14. Gomes I.A. C. et al. Exploring the use of approximate TMR to mask transient faults in logic
with low area overhead, Microelectronics Reliability, 2015, Vol. 55, No. 9-10, pp. 2072-2076.
15. Gurov S.I. Spektral'nyy R-kod s proverkami na chetnost' [Spectral R-code with parity checks],
Prikladnaya matematika i informatika [Applied mathematics and computer science], 2017,
pp. 91-96.
16. Stempkovskiy A.L., Tel'pukhov D.V., Zhukova T.D., Gurov S.I., Solov'ev R.A. Metody sinteza
sboeustoychivykh kombinatsionnykh KMOP skhem, obespechivayushchikh avtomaticheskoe
ispravlenie oshibok [Methods for synthesizing fault-tolerant combinational CMOS circuits that
provide automatic error correction], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU.
Engineering Sciences], 2017, No. 7 (192), pp. 197-210.
17. Gavrilov S.V., Gurov S.I., Zhukova T.D., Ryzhova D.I., Tel'pukhov D.V. Metody povysheniya
sboeustoychivosti kombinatsionnykh IMS metodami izbytochnogo kodirovaniya [Methods for
improving the fault tolerance of combinational ICS using redundant coding methods],
Prikladnaya matematika i informatika: Tr. fakul'teta Vychislitel'noy matematiki i kibernetiki
[Applied mathematics and computer science: Proceedings of the faculty of Computational mathematics
and Cybernetics]. Moscow: Izd-vo fakul'teta VMK MGU, 2016, No. 53, pp. 93-102.
18. Stempkovskiy A.L., Tel'pukhov D.V., Solov'ev R.A., Myachikov M.V., Tel'pukhova N.V.
Razrabotka tekhnologicheski nezavisimykh metrik dlya otsenki maskiruyushchikh svoystv
logicheskikh skhem [Development of technologically independent metrics for evaluating
masking properties of logic circuits], Vychislitel'nye tekhnologii [Computing technologies],
2016, Vol. 21, No. 2.
19. Tel'pukhov D.V., Solov'ev R.A., Tel'pukhova N.V., ShcHelokov A.N. Otsenka parametra
logicheskoy chuvstvitel'nosti kombinatsionnoy skhemy k odnokratnym oshibkam s
pomoshch'yu veroyatnostnykh metodov [Estimation of the logical sensitivity parameter of a
combinational scheme to single errors using probabilistic methods], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 7 (180), pp. 149-158.
20. Cong J., Minkovich K. LUT-based FPGA technology mapping for reliability, Proceedings of
the 47th Design Automation Conference, 2010, pp. 517-522.
Published
2020-11-22
Section
SECTION II. DESIGN AUTOMATION