COMPARATIVE ANALYSIS OF MISSING DATA RECOVERY METHODS

  • A.A. Sorokin St. Petersburg University of Aerospace Instrumentation
  • A. V. Dagaev St. Petersburg University of Aerospace Instrumentation
  • I. M. Borodyansky Southern Federal University
Keywords: Two-dimensional experimental data, data interpolation, data restoration, analysis of interpolation methods

Abstract

In recent decades, the methods of system analysis have been developing qualitatively. It is
associated with an increase in the rate of technical development, the densification of time processes,
the rapid growth of accumulated information and new capabilities of computer technology.
These include methods for analyzing large amounts of data, methods of data mining, methods of
analytical modeling, methods of parallel data processing, neural network methods, forecasting
methods, and others. The presented methods make it possible to quickly and efficiently process
heterogeneous clusters of information, accumulate and synthesize data, generalize and classify
information. The last of the presented methods are methods of interpolation and extrapolation of
lost, damaged or missing information. These methods allow to structure, restore and model information
based on statistical data, mathematical and algorithmic methods. Thus, the article deals
with the problem of recovering missing data in graphic and complex objects. Literary sources on
the problems under consideration are given. They provide extensive information on the topic under
consideration: present genetic algorithms used for spatial interpolation; the solution of problems
of heterogeneity of interpolation of seismic data is considered; it is described the use of
spline approximation to calculate the characteristics of nonlinear electronic components; the
method of constructing a model of three-dimensional parametric rational bodies using generalized
Bezier interpolation is analyzed, which allows modeling the shape of a body and anisotropic
space; methods using fuzzy linear equations are described, which are widespread in computer
vision; the method of adaptive interpolation based on the gradient and taking into account the
local gradient of the original image is investigated. It is made comparing several common methods
of interpolation and data restoration, in article, such as: bilinear interpolation, Bezier surface.
Each method and features of its application within the framework of the experiment are briefly
described. The result of a series of experiments with the presented methods with different numbers
of tests is presented. In conclusion, summary is drawn about the rationality of choosing one of the
proposed methods without the use of a long field experiment in each case.

References

1. Wei Liu, Dongmei Zhang, Ao Wang. Research of Spatial Data Interpolation Algorithm Based
on SVR Optimization by GA, Computational Intelligence and Intelligent Systems, 2010,
pp. 137-145.
2. Xihua Yang, Xiaojin Xie, De Li Liu, Fei Ji, Lin Wang. Spatial Interpolation of Daily Rainfall
Data for Local Climate Impact Assessment over Greater Sydney Region, Advances in Meteorology,
2015.
3. Zhihua Tian, Bin Xie, Yong Pan, Ningbo Wang, Hao Cheng. Uermaimaiti Wumaierjiang. Data
Interpolation Method Based on Minimum Total Variation Method, Proceedings of the 2019
International Conference on Artificial Intelligence and Computer Science, 2019, pp. 682-685.
4. Zaytseva E.V. Vybor metoda interpolyatsii pri reshenii zadachi statisticheskogo vosstanovleniya
nepreryvnykh raspredeleniy geologicheskikh parametrov pri postroenii informatsionnykh sistem
ekologicheskogo monitoringa [Selection of the interpolation method for solving the problem of statistical
restoration of continuous distributions of geological parameters in the construction of information
systems for environmental monitoring], Gornyy informatsionno-analiticheskiy byulleten'
[Mining information and analytical Bulletin], 2002, No. 2, pp. 197-198.
5. Mekhova G.A., Rudenko N.V., Trofimenko V.N. Trofimenko E.N. Interpolyatsiya
eksperimental'nykh dannykh pri opredelenii kharakteristik i parametrov nelineynykh
elektronnykh komponentov [Interpolation of experimental data in determining the characteristics
and parameters of nonlinear electronic components], Tr. severo-kavkazskogo filiala
moskovskogo tekhnicheskogo universiteta svyazi i informatiki [Proceedings of the North Caucasus
branch of the Moscow technical University of communications and Informatics], 2014,
No. 1, pp. 278-280.
6. Ayushev T.V., Bulychev R.N. Modelirovanie parametricheskikh tverdykh tel s primeneniem
obobshchennoy lineynoy interpolyatsii [Modeling of parametric solids using generalized linear interpolation],
26-ya mezhdunarodnaya konferentsiya “Graphicon 2016” ANO nauchnogo
obshchestva «Grafikon» i Nizhegorodskogo gosudarstvennogo arkhitekturno-stroitel'nogo
universiteta [26th International Conference "Graphicon 2016" of the Scientific Society "Grafikon"
and Nizhny Novgorod State Architectural and Construction University], 2016, pp. 72-76.
7. Zharinov I.O., Zharinov O.O. Interpolyatsiya linii spektral'nykh tsvetnostey tsvetovogo lokusa
na osnove splaynov Bez'e [Interpolation of the spectral chromaticity line of a color locus based
on Bezier splines], Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Izvestia of higher
educational institutions. Equipment], 2015, Vol. 58 (12), pp. 985-992.
8. Abd Wahab, Rozaimi Zakaria, Jamaludin Ali. Fuzzy Interpolation Rational Bezier Curve,
Ninth International Conference on Computer Graphics, Imaging and Visualization, 2012,
pp. 63-67.
9. Ayushev T.V., Bulychev R.N. Modelirovanie parametricheskikh ratsional'nykh tel s
ispol'zovaniem obobshchennoy interpolyatsii Bez'e [Modeling of parametric rational bodies
using generalized interpolation Bezier], Vestnik Buryatskogo gosudarstvennogo universiteta.
Matematika, informatika [Vestnik Buryat State University. Mathematics, informatics], 2018,
No. 1, pp. 83-94.
10. Ayushev T.V., Pavlova S.V., Bulychev R.N. Geometricheskoe modelirovanie mnogosloynykh
konstruktsiy s primeneniem krivykh i poverkhnostey bez'e [Geometrical modeling of multilayered
constructions using curves and bezier surfaces], Dinamika sistem, mekhanizmov i
mashin [Dynamics of systems, mechanisms and machines], 2016, No. 3, pp. 125-128.
11. Fedoruk V.A. Obrabotka eksperimental'nykh dannykh na osnove "Metodiki sdviga" pri
interpolyatsii kubicheskimi splaynami [Processing of experimental data on the basis of the
"Offset Methodology" for interpolation of cubic splines], Vestnik sibirskoy gosudarstvennoy
avtomobil'no-dorozhnoy akademii [Bulletin of the Siberian State Road and Road Academy],
2016, No. 2 (48), pp. 132-136.
12. Romadanova M.M. Algoritmy postroeniya monotonnogo vesovogo kubicheskogo splayna
[Algorithms of construction of monotonous weight cubic spline], Izvestiya tul'skogo
gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestia of Tula State University. Technical
sciences], 2018, No. 9, pp. 180-192.
13. Yanlin Geng, Tong Lin, Zhouchen Lin, Pengwei Hao. Refined Exponential Filter with Applications
to Image Restoration and Interpolation. Computer Vision - ACCV 2009, pp. 33-42.
Available at: https://www.researchgate.net/publication/220745293_Refined_Exponential_ Filter_
with_ Applications_to_Image_Restoration_and_Interpolation.
14. Shcherba E.V. Analiz primenimosti metodov interpolyatsii i ekstrapolyatsii dlya resheniya
zadachi vosstanovleniya izobrazheniya [Analysis of the applicability of interpolation and extrapolation
methods to solve the problem of image recovery], Komp'yuternaya optika [Computer
optics], 2009, No. 33 (3), pp. 336-339.
15. Jinyu Chu, Ju Liu, Jianping Qiao, Xiaoling Wang, Yujun Li. Gradient-based adaptive interpolation
in super-resolution image restoration, International Conference on Signal Processing
Proceedings, 2009.
16. Tudor Barbu. Novel Diffusion-Based Models for Image Restoration and Interpolation, 2019.
17. Polovko A.M., Butusov P.N. Interpolyatsiya. Metody i komp'yuternye tekhnologii ikh
realizatsii [Interpolation. Methods and computer technologies of their implementation]. Moscow:
BKhV-Peterburg, 2016, 320 p.
18. Rassel Dzhessi. Bikubicheskaya interpolyatsiya [Bikubic Interpolation]. Moscow: Kniga po
Trebovaniyu, 2013, 814 p.
19. Astashkin S.V. Interpolyatsiya operatorov i ee prilozheniya [Interpolation of operators and its
applications]. Moscow: Kniga po trebovaniyu, 2013, 188 p.
20. Kreyn S.G., Petunin Yu.I., Semenov E.M. Interpolyatsiya lineynykh operatorov [Interpolation
of line operators]. Moscow: Glavnaya redaktsiya fiziko-matematicheskoy literatury izdatel'stva
"Nauka", 2014, 400 p.
21. Mikheev S.E. Mnogomernaya approksimatsiya i interpolyatsiya [Multidimensional approximation
and interpolation]. Saint Petersburg: Izd-vo S.-Peterb. un-ta, 2012, 59 p.
22. Uolsh Dzh.L. Interpolyatsiya i approksimatsiya ratsional'nymi funktsiyami v kompleksnoy
oblasti [Interpolation and approximation of rational functions in the complex area]. Moscow:
Izd-vo inostrannoy literatury, 1961, 508 p.
23. Martyshenko S.N. Metody vosstanovleniya propuskov v dannykh, predstavlennykh v
razlichnykh izmeritel'nykh shkalakh [Methods for recovering gaps in data presented in various
measuring scales], Territoriya novykh vozmozhnostey. Vestnik Vladivostokskogo
gosudarstvennogo universiteta ekonomiki i servisa [Territory of new opportunities. Bulletin of
the Vladivostok State University of Economics and Service], 2013, No. 4 (22), pp. 242-255.
24. Zloba E., Yatskiv I. Statisticheskie metody vosstanovleniya propushchennykh dannykh [Statistical
methods for recovering missing data], Computer Modelling & New Technologies, 2002,
Vol. 6, No. 1, pp. 51-61.
25. Sorokin A.A., Kovalenko R.A., Yakovleva E.A. Prognozirovanie stoimosti arendy skladskikh
pomeshcheniy na osnove statisticheskikh dannykh [Forecasting the cost of rental warehouse
based on statistical data], Evraziyskiy soyuz uchenykh [Eurasian Union of Scientists], 2018,
No. 12 (57), pp. 59-62.
26. Ryzhenkova K.V. Metody vosstanovleniya propuska dannykh pri provedenii statisticheskikh
issledovaniy [Methods for recovering data gaps in statistical studies], Intellekt. Innovatsii.
Investitsii [Intelligence. Innovation. Investments], 2012, No. 3, pp. 127-133.
Published
2020-11-22
Section
SECTION I. ARTIFICIAL INTELLIGENCE AND FUZZY SYSTEMS