AN ONTOLOGICAL APPROACH TO DISTRIBUTED COMPUTING TECHNOLOGIES IMPLEMENTATION ON THE INTERNET

  • V. M. Kureichik Southern Federal University
  • I.B. Safronenkova Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences
Keywords: Distributed computer-aided design system, “fog”- computting, workload relocation problem, ontology

Abstract

Distributed computing technologies development has allowed uniting geographically distributed
resources and has provided an opportunity for effective resource intensive problemsolving
in various fields of science and technology. At the same time a set of problems, which demands
the development of new approaches, taking into account contemporary Internet technologies
implementation, has risen. In this paper a problem of workload relocation in distributed computer-
aided design system (DCAD) operating in the “fog” environment was considered. The goal
of this paper is ontological approach development to workload relocation problem-solving in
DCAD taking into account some “fog” environment features. The ontological approach involves
an ontological procedure implementation, which allows “filtering” the candidate-nodes, which
have insufficient resources for workload relocation. The scientific novelty of this paper is ontological
models using for workload relocation problem-solving in DCAD. It allows reducing the number
of candidate-nodes in the “fog” for workload relocation, thereby contributing to reduce the
time of location process modeling and, consequently, the total time of workload relocation problem-
solving is also reduced. The fundamental difference of presented approach is domain
knowledge, represented in ontological model, applying for workload relocation problem-solving.
The experimental study results have shown the expediency of ontological analysis for workload
relocation problem-solving .

References

1. Kuzyurin N.N., Grushin D.A., Fomin S.A. Problemy dvumernoy upakovki i zadachi
optimizatsii v raspredelennykh vychislitel'nykh sistemakh [Two-dimensional packing problems
and optimization in distributed computing systems], Tr. ISP RAN [Proceedings of the Institute
for System Programming of the RAS], 2014, No. 1, pp. 483-501.
2. Zhuk. S.N. O postroenii raspisaniy vypolneniya parallel'nykh zadach na gruppakh klasterov s
razlichnoy proizvoditel'nost'yu [On-line algorithm for scheduling parallel tasks on a group of
related clusters], Tr. Instituta sistemnogo programmirovaniya RAN [Proceedings of the Institute
for System Programming of the RAS], 2012, Vol. 23, pp. 447-454.
3. Mel'nik E.V., Klimenko A.B., Ivanov D.Ya. Model' zadachi raspredeleniya vychislitel'noy
nagruzki dlya informatsionno-upravlyayushchikh sistem na baze kontseptsii tumannykh
vychisleniy [Model of the problem of distribution of computing load for information-control
systems on the basis of the concept of miscalculation], Izvestiya TulGU. Tekhnicheskie nauki
[Izvestiya Tula State University], 2018, No. 2, pp. 174-187.
4. Melnik E.V., Klimenko A.B. A Novel Approach to the Reconfigurable Distributed Information
and Control Systems Load-Balancing Improvement, 11th International Conference on Application
of Information and Communication Technologies (AICT) – 2017, pp. 355-359.
5. Cisco Fog Computing Solutions: Unleash the Power of the Internet of Things. Available at:
https://docplayer.net/19735338-Unleashing-the-power-of-the-internet-of-things.html (accessed
16 July 2020).
6. Glushan' V.M., Lavrik P.V. Raspredelennye SAPR. Arkhitektura i vozmozhnosti [Distributed
CAD systems. Architecture and possibilities]. Staryy Oskol: TNT, 2015, 187 p.
7. Dmitrevich G.D., Anisimov D.A. Postroenie sistem avtomatizirovannogo proektirovaniya na
osnove servis-orientirovannoy arkhitektury [Computer-aided design systems engineering
based on service-oriented architecture], Izvestiya SPbGETU «LETI» [Izvestia SPbETU
“LETI”], 2014, No. 2, pp. 14-18.
8. Oblachnye i interaktivnye SAPR [Cloud and interactive CAD systems]. Available at:
https://www.autodesk.ru/solutions/cloud-based-online-cad-software (accessed 16 July 2020).
9. AWS IoT Greengrass. Available at: https://aws.amazon.com/ru/greengrass/ (accessed 16 July
2020).
10. Glushan' V.M., Ivan'ko R.V. Analiz effektivnosti raspredelennykh SAPR [The analysis of CAD
system effectiveness], Izvestiya TRTU [Izvestiya TSURE], 2006, No. 8 (63), pp. 115-120.
11. Chiang M., Balasubramanian B., Bonomi F. Fog for 5G and IoT. Wiley, 2017, 305 p.
12. Kalyaev I., Melnik E., Klimenko A. A Technique of Adaptation of the Workload Distribution
Problem Model for the Fog-Computing Environment, Advances in Intelligent Systems and
Computing, 2019, Vol. 986.
13. Guzik V.F., Kalyaev I.A., Levin I.I. Rekonfiguriruemye vychislitel'nye sistemy: uchebnoe
posobie [Reconfigurable computer systems], ed. by I.A. Kalyaeva. Taganrog: Izd-vo YuFU,
2016, 472 p.
14. Melnik E.V., Klimenko A.B., Ivanov D.Ya. Model' zadachi formirovaniya soobshchestv ustroystv
informatsionno-upravlyayushchikh sistem v sredakh tumannykh vychisleniy [A model of local
group device of information and management system forming in the fog-environmental], XIII
Vserossiyskoe soveshchanie po problemam upravleniya VSPU-2019 [Proceedings of the XIII
VSPU-2019.]. Tula: Tul'skiy gosudarstvennyy universitet, 2018, Issue 2.
15. Tsukanova N.I. Ontologicheskaya model' predstavleniya i organizatsii znaniy: ucheb. posobie
dlya vuzov [An ontological model of knowledge representation and management: study guide
for universities]. Moscow: Goryachaya liniya – Telekom, 2014, 272 p.
16. Kureychik V.M., Safronenkova I.B. Sozdanie ontologicheskoy modeli sistem
avtomatizirovannogo proektirovaniya v srede Protege 4.2 [Creation of CAD-systems ontology
using Protege 4.2] Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem –
2016: Sb. trudov [All-Russia Science &Technology Conference "Problems of Advanced Micro-
and Nanoelectronic Systems Development"], ed. by Akademika RAN A.L.
Stempovskogo. Moscow: IPPM RAN, 2016, Part III, pp. 240-246.
17. Kureichik V., Safronenkova I.: Ontology-Based Decision Support System for the Choice of
Problem-Solving Procedure of Commutation Circuit Partitioning, Creativity in Intelligent
Technologies and Data Science, 2017, Vol. 754.
18. Gladkov L.A., Kureychik V.V., Kureychik V.M., Sorokoletov P.V. Bioinspirirovannye metody v
optimizatsii [Bio-inspired methods in optimization]. Moscow: Fizmatlit, 2009, 384 p.
19. Karpenko A.P. Sovremennye algoritmy poiskovoy optimizatsii. Algoritmy, vdokhnovlennye
prirodoy: ucheb. posobie [Contemporary algorithms of search engine optimization. Bioinspired
algorithms: textbook]. Moscow: Izd-vo MGTU im. N.E. Baumana, 2014, 446 p.
20. Safronenkova I.B., Mel'nik E.V., Kureychik V.M. Svidetel'stvo o gosudarstvennoy registratsii
programmy dlya EVM 2020616523 Rossiyskaya Federatsiya. Modul' ontologicheskogo analiza
dlya raspredelennoy sistemy avtomatizirovannogo proektirovaniya [State registration certificate
2020616523 Russian Federation. A module of ontological analysis for distributed computer-aided
design system]; applicants and copyright holders Federal state budgetary institution of science "Federal
research center southern scientific center of the Russian Academy of Sciences" (UNC RAS),
Safronenkova Irina Borisovna, No 2020614892; declared 18.05.2020; published 18.06.2020, 1 p.
Published
2020-11-22
Section
SECTION I. ARTIFICIAL INTELLIGENCE AND FUZZY SYSTEMS