THE PROSPECTS FOR INTENSIFICATION OF SINTERING OF PIEZOCERAMIC MATERIALS
Abstract
The paper investigates the possibility of changing the properties of piezoelectric ceramics for various purposes.
The aim of the study is to correct properties by changing technological factors in the manufacture of
piezoceramics without modifying their chemical composition. At the most important technological stage – sintering
– the density, hardness and strength of piezoceramics are formed, which directly affect its electrophysical
parameters, since the piezoelectric effect is an Electromechanical transformation. Of particular interest are sintering
methods that combine the process of compaction of particles with heating - hot pressing and spark plasma
sintering. Such methods, due to the created uniaxial pressure, activate the diffusion processes of mass transfer
during sintering, contributing to the production of high-density piezoceramics while lowering the sintering temperatures. However, unlike hot pressing, spark plasma sintering generates spark discharges between the powder
particles, which, in combination with ultra-fast heating (up to 1000 ° C/min), forms a fine-grained monophase
structure of ceramics. This microstructure increases the mechanical and electrophysical parameters of the resulting
ceramics. The aim of the study was to test the proposed sintering methods on piezoelectric materials of different
compositions in order to control their properties. The objects of research were piezoceramic materials based
on the zirconate-titanate-lead system and their modifications, including multicomponent materials with high application
potential, as well as lead-free ferroelectric material Ba0.55Sr0.45TiO3 (BST). The dependences of the
formed ceramic structure on the sintering method and temperature were determined using scanning electron
microscopy. The regularities of "sintering method – microstructure – properties" are established. The effectiveness
of hot pressing and spark plasma sintering methods for correcting the properties of piezoceramics of various
types of applications has been confirmed, which together with a decrease in sintering temperatures, as well as a
reduction in the duration of the process (by 36 times!) relevant for energy saving purposes.
References
[Ferroelectric morphotropic transitions]. Rostov-on-Don: Izd-vo Rostov. un-ta, 1991.
2. Fesenko E.G., Dantsiger A.Ya., Razumovskaya O.N. Novye p'ezokeramicheskie materialy
[New piezoceramic materials]. Rostov-on-Don: Izd-vo Rostov. un-ta, 1983.
3. Topolov V.Yu., Panich A.E. Elektromekhanicheskie svoystva segnetop'ezokeramik na osnove
oksidov semeystva perovskita [Electromechanical properties segnetoelectric on the basis of oxides
of the perovskite family], Issledovano v Rossii [Studied in Russia], 2008, Reg. N 002, pp. 8-26.
4. Keramik/Hrsq. H. Schaumburq. Stuttqart: B.G. Tenbner, 1994.
5. Panich A.A., Marakhovskiy M.A., Motin D.V. Kristallicheskie i keramicheskie p'ezoelektriki [Crystal
and ceramic piezoelectrics], Inzhenernyy vestnik Dona [Engineering Bulletin of the Don], 2011,
No. 1. Available at: http://www.ivdon.ru/magazine/archive/n1y2011/325 (access is free).
6. Poplavko Yu.M. [i dr.]. Fizika aktivnykh dielektrikov [Physics of active dielectrics]. Rostovon-
Don: Izd. YuFU, 2009, 480 p.
7. Marder R., Caim R., Estournès C., Chevallier G. Plasma in spark plasma sintering of ceramic
particle compacts, Scripta materialia, 2014, Vol. 82, pp. 57-60.
8. Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. The effect of electric field and pressure on
the synthesis and consolidation of materials: A review of the spark plasma sintering method,
Journal of Materials Science, 2006, Vol. 41, pp. 763-777.
9. Ilyina A.M., Aleksandrova E.V., Grigoryev E.G., Olevsky E.A. Influence of the electric
current on the spark-plasma sintering processing, Journal of Vector Scince, 2013, No. 3
(25), pp. 185-187.
10. Annenkov Yu.M., Akarachkin S.A., Ivashutenko A.S. Mekhanizm iskrovogo plazmennogo
spekaniya keramiki [Mechanism of spark plasma sintering of ceramics], Butlerovskie
soobshcheniya [Butlerovskie messages], 2012, Vol. 30 (4), pp. 74-78.
11. Tokita M. Tendentsii v razvitii sistem iskrovogo plazmennogo spekaniya i tekhnologii [Trends
in the development of spark plasma sintering systems and technologies], Zhurnal obshchestva
spetsialistov poroshkovykh tekhnologiy [Journal of the society of powder technology specialists],
1993, No. 30 (11), pp. 790-804.
12. Vendik O.G., Dedyk A.I., Dmitrieva R.V. i dr. Gisterezis dielektricheskoy pronitsaemosti titanata
strontsiya pri 4,2 K [Hysteresis of the dielectric constant of strontium titanate at 4.2 K], FTT [Solid
State Physics], 1984, Vol. 26, Issue 3, pp. 684-689;
13. Marakhovskiy M.A., Panich A.A., Marakhovskiy V.A. Issledovanie kharakteristik
segnetokeramiki titanata bariya-strontsiya, poluchennoy metodom iskrovogo plazmennogo
spekaniya [Investigation of the characteristics of barium-strontium titanate ferroceramics obtained
by spark plasma sintering], INTERMATIC-2018. Part 2. Moscow, 2018, 430 p.
14. Nenasheva E.A., Kanareykin A.D., Dedyk A.I., Pavlova Yu.V. Elektricheski upravlyaemye
komponenty na osnove keramiki BST – Mg dlya primeneniya v uskoritel'noy tekhnike [Electrically
controlled components based on BST – Mg ceramics for use in accelerator technology],
FTT [Solid State Physics], 2009, Vol. 51, Issue. 8, pp. 1468-1472.
15. Yamada H. Pressureless sintering of PMN-PT ceramics, Journal of the european ceramic society,
1999, Vol. 19 (6-7), pp. 1053-1056.
16. Lente M.H., Zanin A.L., Assis S.B., Santos I.A., Garcia D., Eiras J.A. Ferroelectric domain
dynamics in PMN-PT ceramics, Ferroelectrics. Gordon and Breach Science Publishers, 2003,
Vol. 296, pp. 149-155.
17. Liou Y.C. Stoichiometric perovskite PMN-PT ceramics produced by reaction-sintering process,
Materials science and engineering: B, 2003, Vol. 103 (3), pp. 281-284.
18. Marakhovskiy M.A., Panich A.A. Poluchenie p'ezokeramiki sistemy PMN-PT metodom
iskrovogo spekaniya [Obtaining piezoceramics of PMN-PT system by spark sintering],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2017, No. 6
(191), pp. 242-249.
19. Sharapov V.M., Minaev V.G., Sotula Zh.V., Kunitskaya L.G. Elektroakusticheskie
preobrazovateli [Electroacoustic converters]. Moscow: Tekhnosfera, 2013, 296 p.
20. Marakhovskiy M.A., Panich, A.E., Marakhoaskiy V.A. Vliyanie tekhnologii spekaniya na
svoystva segnetozhestkoy keramiki sistemy TSTS. Tekhnologii i materialy dlya ekstremal'nykh
usloviy [nfluence of sintering technology on the properties of Ferroalloy ceramics of the CTS
system. Technologies and materials for extreme conditions]. Agoy, 2019, 343 p.
21. Marakhovskiy M.A., Marakhovskiy V.A., Miryushchenko E.A., Panich E.A. Issledovanie
vozmozhnosti sozdaniya novykh polifaznykh p'ezomaterialov dlya gidroakusticheskikh
preobrazovateley. GA-2018 [Investigation of the possibility of creating new polyphase
piezomaterials for hydroacoustic transducers. GA-2018]. Saint Petersburg, 2018, 616 p.