DEVELOPMENT OF KNOCK MATHEMATICAL MODEL FOR MODERN IC ENGINE

  • A.L. Beresnev Southern Federal University
  • М. А. Beresnev Medotrade Ltd
Keywords: Internal combustion engine, knock, model

Abstract

The paper examines under-studied aspects of internal combustion engine management, such
as the use of knock. In knock, instead of a constant frontal flame, a detonation wave is formed in
the combustion zone, carrying at supersonic speed. Fuel and oxidant are detonated in compression
wave. This process, from the point of view of thermodynamics, increases the efficiency of the engine.
In internal combustion engines, there are two different modes of combustion propagation of
air mixture fuel: deflagration and detonation. Engines operating in detonation combustion mode
are currently not used and their capabilities are most interesting. Modern internal combustion
engines do not carry the detonation mode well, but the possibility of short-term combustion of part
of the fuel-air mixture with detonation is embedded in their design. The situation of detonation is
currently constantly being studied, it is considered as a harmful component of the combustion
process, which requires improvement of the engine, its control and use of modern fuel. It is proposed
to use this, considered random, process to increase the torque and power of the internal
combustion engine. The possibility of using detonation combustion of fuel-air mixture in internal
combustion engine as a useful part of the working process is considered, and the possibility of
controlling combustion of fuel-air mixture in a mixed mode is assumed, which allows to improve
indicator parameters. Assumptions have been made to create a model and the cylinder pressure
has been simulated during the combustion phase of the partially detonated fuel-air mixture. The
method of heat generation calculation has been determined, which is one of the most important
stages of mathematical model creation, as this determines accuracy and adequacy of calculated
parameters, both for deflagration combustion modes of fuel-air mixture and using detonation
combustion. Proposed procedure for calculation of internal combustion engine operating cycle
parameters makes it possible to carry out real-time calculations and account for influence of binary
fuel composition on parameters of power, economy, mechanical and dynamic load on parts of
crank mechanism, as well as thermal load on engine.

References

1. Zel'dovich Ya.B., Kompaneets A.S. Teoriya detonatsii [Theory of detonation]. Moscow: Gos.
izd-vo tekhn.-teoret. lit., 1955, 268 p.
2. Wang Z., Liu H., Reitz R.D. Knocking combustion in spark-ignition engines, Progress in Energy
and Combustion Science, 2017, Vol. 61, pp. 78-112.
3. Gowthaman S., Sathiyagnanam A.P. Performance and emission characteristics of homogeneous
charge compression ignition engine–a review, International Journal of Ambient Energy,
2017, Vol. 38, No. 7, pp. 672-684.
4. Mitrofanov V.V. Teoriya detonatsii [Theory of detonation]. Novosibirsk: NGU, 1982, 92 p.
5. Caton J.A. The interactions between IC engine thermodynamics and knock, Energy Conversion
and Management, 2017, Vol. 143, pp. 162-172.
6. Beresnev A.L, Beresnev M.A. Uvelichenie effektivnosti podvizhnykh ob"ektov s
ispol'zovaniem detonatsii v khodovom dvigatele vnutrennego sgoraniya [Increasing the efficiency
of mobile objects using detonation in a running internal combustion engine],
Perspektivnye sistemy i zadachi upravleniya: Mater. XIII vserossiyskoy nauchnoprakticheskoy
konferentsii [Perspective systems and management tasks: Materials of the XIII
all-Russian scientific and practical conference]. Vladivostok, 2018, pp. 131-138.
7. Beresnev M.A., Beresnev A.L. Upravlenie sostavom binarnogo topliva dlya uluchsheniya
pokazateley DVS [Managing the composition of binary fuel to improve the performance of internal
combustion engines], AvtoGazoZapravochnyy kompleks + Al'ternativnoe toplivo [Gas
station complex + Alternative fuel], 2012, No. 3 (63), pp. 7-10.
8. Beresnev A.L, Beresnev M.A. Bystritskiy A.V. Vozmozhnosti upravleniya detonatsionnym
goreniem razlichnykh tipov v DVS [Features of controlling detonation Gorenje of various
types in the internal combustion engine], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences]. – 2019. – № 3 (205). – C. 198-207.
9. Beresnev A.L., Beresnev M.A., Bystritskiy A.V. Issledovanie vozmozhnosti upravleniya DVS
vo vremya detonatsionnogo goreniya chasti toplivo-vozdushnoy smesi [Investigation of the
possibility of controlling the internal combustion engine during the detonation Gorenje part of
the fuel-air mixture], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences].
2018, No. 6 (200), pp. 164-174.
10. Beresnev M.A., Beresnev A.L. Osobennosti kontrolya detonatsii pri ispol'zovanii binarnogo
topliva [Features of detonation control when using binary fuel], Sb. nauchnykh trudov SWorld
[Collection of scientific papers SWorld], 2011, Vol. 1, No. 2, pp. 56-58.
11. Orlin A.S. Teoriya porshnevykh i kombinirovannykh dvigateley [Theory of piston and combined
engines], ed. by A.S. Orlina i M.G. Kruglova. Moscow: Mashinostroenie, 1983, 372 p.
12. L'yuis B., El'be G. Gorenie, plamya i vzryvy v gazakh [Combustion, flames and explosions of
gases]. Moscow: Mir, 1968, 592 p.
13. Glagolev N.M. Rabochie protsessy dvigateley vnutrennego sgoraniya. Novyy metod rascheta
[Working processes of internal combustion engines. A new method of calculation]. Moscow:
Izd-vo mashinostr. lit., 1950, 481 p.
14. Giryavets A.K. Teoriya upravleniya avtomobil'nym benzinovym dvigatelem [Theory of automobile
gasoline engine control]. Moscow: Stroyizdat, 1997, 161 p.
15. Kavtaradze R.Z. Teoriya porshnevykh dvigateley. Spetsial'nye glavy [Theory of piston engines.
Special chapters]. Moscow: Izd-vo MGTU im N.E. Baumana, 2008, 720 p.
16. Ivashchenko N.A., Kavtaradze R.Z. Mnogozonnye modeli rabochego protsessa dvigateley
vnutrennego sgoraniya [Multi-zone models of the internal combustion engine workflow].
Moscow: Izd-vo MGTU im. N.E. Baumana, 1997, 57 p.
17. Varnatts Yu., Maas U., Dibbl R. Osnovy goreniya. Fizicheskie i khimicheskie aspekty,
modelirovanie, eksperimenty. Obrazovanie zagryaznyayushchikh veshchestv [Basics of
Gorenje. Physical and chemical aspects, modeling, experiments], transl. from engl.
G.L. Agafonova, ed. by P.A. Vlasov. Moscow: Fizmatlit, 2003, 352 p.
18. Inozemtsev N.V., Koshkin V.K. Protsessy sgoraniya v dvigatelyakh [Combustion processes in
engines]. Moscow: Mashgiz, 1949, 344 p.
19. Glagolev N.M. Rabochie protsessy dvigateley vnutrennego sgoraniya [Working processes of
internal combustion engines]. Moscow: Mashgiz, 1950, 479 p.
20. Vibe I.I. Novoe o rabochem tsikle dvigatelya [New about the working cycle of the engine].
Moscow: Mashgiz, 1962, 271 p.
21. Sharoglazov B.A., Farafontov M.F., Klemen'tev V.V. Dvigateli vnutrennego sgoraniya: teoriya,
modelirovanie i raschet protsessov [Internal combustion engines: theory, modeling and calculation
of processes]. Chelyabinsk: Izd-vo YuUrGU, 2004, 344 p.
22. Elagin M.Yu., Kuz'mina I.V. Matematicheskaya model' i teoreticheskie issledovaniya
rabochikh protsessov mnogotsilindrovykh dvigateley vnutrennego sgoraniya [Mathematical
model and theoretical studies of working processes of multi-cylinder internal combustion engines],
Izvestiya TulGU. Seriya «Avtomobil'nyy transport» [Izvestiya of the Tula state University.
Series “Road transport”], Issue 3. Tula: TulGU, 1999, pp. 104-107.
23. Beresnev M.A., Beresnev A.L. Mathematical model of gasoline-liquified gas mixture combustion
for IC engine control, Modern Fundamental and Applied Recearches, 2011, No. 3, pp. 58-61.
24. Kuz'min A.V. Pokazateli i regulirovki bitoplivnogo dvigatelya pri perevode ego s benzina na
szhizhennyy uglevodorodnyy gaz: diss. ... kand. tekhn. nauk [Indicators and adjustments of the
bi-fuel engine when converting it from gasoline to liquefied petroleum gas: cand. of eng. sc.
diss.]. Volgograd: VolgGTU, 2008, 116 p.
25. Fedyanova N.A. Ispol'zovanie matematicheskogo modelirovaniya rabochego protsessa dlya
razrabotki i obosnovaniya kontseptsii effektivnogo upravleniya uglom operezheniya
zazhiganiya v DVS: diss. ... kand. tekhn. nauk [Using mathematical modeling of the workflow
to develop and justify the concept of effective control of the ignition advance angle in the internal
combustion engine: cand. of eng. sc. diss.]. Volgograd: VolgPI, 1992, 139 p.
Published
2020-07-20
Section
SECTION II. COMPUTING AND INFORMATION AND CONTROL SYSTEMS