HARDWARRE-SOFTWARE FRAMEWORK FOR DEVELOPMENT OF MODULAR MOBILE ROBOTS WITH HIERARCHICAL ARCHITECTURE

  • V.P. Andreev Moscow State University of Technology «STANKIN» (MSTU «STANKIN»)
  • V.L. Kim Moscow State University of Technology «STANKIN» (MSTU «STANKIN»)
  • S.R. Eprikov The Keldysh Institute of Applied Mathematics
Keywords: Modular robot, mobile robot, distributed control, bus topology, communication protocol, CAN, computer networks

Abstract

In this paper, we consider the main problems associated with the need to integrate various robotic components into a single system while increasing the complexity of the navigation algo-rithms of mobile robots. The work aims to present a hierarchical modular architecture for reconfigurable mobile robots as a solution to the problems posed. In this architecture, a mobile robot is considered as a combination of modules, which in turn consist of simpler blocks - submodules. Each submodule includes a low-power microcontroller and is responsible only for the basic func-tions. A set of submodules forms a module - a transport platform, a robot leg, a manipulator, etc. Besides, one of the main objectives of the project is to provide a framework based on this architec-ture for rapid prototyping of robots from unified modules. The article describes the manufactured prototypes of the modules, briefly discusses the protocol of intermodular interaction of submodules connected by a CAN bus. The results of experiments on testing the protocol are presented and their analysis is given. The efficiency of the proposed solution limitations and a short plan of fur-ther actions for the implementation of the project are shown.

References

1. Phidgets Inc. Products for USB Sensing and Control. Available at: https://www.phidgets.com/ (accessed 26 February 20).
2. HEBI Robotics. Available at: https://www.hebirobotics.com (accessed 26 February 20).
3. Iñigo-Blasco P., Diaz-del Rio F., Romero-Ternero M., Cagigas-Muñiz D. & Vicente-Diaz S. Robotics software frameworks for multiagent robotic systems development, Robotics and Au-tonomous Systems, 2012, Vol. 60, No. 6, pp. 803-821. ISSN: 0921-8890.
4. Herbrechtsmeier S., Korthals T., Schopping T. & Ruckert U. AMiRo: a modular & customiza-ble open-source mini robot platform, 20th International Conference on System Theory, Con-trol and Computing (ICSTCC), Sinaia. 2016, pp. 687-692.
5. Kalouche S., Rollinson D. & Choset H. Modularity for maximum mobility and manipulation: control of a reconfigurable legged robot with series-elastic actuators, IEEE International Sym-posium on Safety, Security, and Rescue Robotics (SSRR). West Lafayette, IN, USA, 18-20 Oct. 2015, pp. 1-8. IEEE, New York.
6. Virk G. CLAWAR Modularity for Robotic Systems, The International Journal of Robotics Research, March-April 2003, Vol. 22, No. 3-4, pp. 265-277. ISSN: 02783649.
7. Steinbauer G., Wotawa F. & Fraser G. A modular architecture for a multi-purpose mobile robot, Innovations in Applied Artificial Intelligence, IEA/AIE 2004. Lecture Notes in Comput-er Science, pp. 1007-1015. Springer, Berlin, Heidelberg. ISBN 978-3-540-24677-0. DOI: 10.1007/978-3-540-24677-0_103.
8. Taira T., Kamata N. & Yamasaki N. Design and implementation of reconfigurable modular humanoid robot architecture, IEEE/RSJ International Conference on Intelligent Robots and Systems 2005, 2-6 Aug. 2005, Edmonton, Alta., Canada. IEEE, New York. ISSN 2153-0858, pp. 1071-1076. DOI: 10.1109/IROS.2005.1545122.
9. Ahn H., Beak Y., Sa I., Kang W., Na J. and Choi J. Design of reconfigurable heterogeneous modular architecture for service robots, IEEE/RSJ International Conference on Intelligent Ro-bots and Systems 2008, 22-26 Sept. 2008, Nice, France, pp. 1313-1318, IEEE, New York. ISSN 2153-0858. ISBN 978-1-4244-2057-5. DOI: 10.1109/IROS.2008.4650706.
10. Hild M., Siedel T., Benckendorff C., Thiele C. & Spranger M. Myon, a New Humanoid, In: Language Grounding in Robots, Steels L., Hild M. (eds). Springer, 2012, pp. 25-44. ISBN 978-1-4614-3063-6. Boston, MA.
11. Roh S., Yang K., Park J., Moon H., Kim H.-S., Lee H. & Choi H. A modularized personal robot DRP I: design and implementation, IEEE Transactions on Robotics, 2009, Vol. 25, No. 2, pp. 414-425. ISSN 1552-3098. DOI: 10.1109/TRO.2009.2014499.
12. Magnenat S., Rétornaz P., Bonani M., Longchamp V. & Mondada F. ASEBA: a modular architec-ture for event based control of complex robots, IEEE/ASME Transactions on Mechatronics, 2010, Vol. 16, No. 2, pp. 321-329. ISSN 1083-4435. DOI: 10.1109/TMECH.2010.2042722.
13. Bonarini A., Matteucci M., Migliavacca M. & Rizzi D. R2P: An open source hardware and software modular approach to robot prototyping, Robotics and Autonomous Systems, 2014, Vol. 62, Issue 7, pp. 1073-1084. ISSN 0921-8890, DOI: 10.1016/j.robot.2013.08.009.
14. Losada, D.P., Fernández J.L.; Paz E. & Rafael S. Distributed and modular CAN-based architecture for hardware control and sensor data integration, Sensors, 2017, Vol. 17 (5), pp. 1013-1030. ISSN 1424-8220. DOI: 10.3390/s17051013.
15. Shmakov O., Korolev D., Popov D., Kitaev N. & Korotkov A. Modular Mobile Robotic Kit for Prototyping and Debugging of Control Algorithms, Proceedings of the 28th DAAAM Interna-tional Symposium, 2017, pp. 0950-0956.
16. Mayoral V., Hernandez A., Kojcev R., Muguruza I. Zamalloa I. Bilbao A. & Usategi L. The shift in the robotics paradigm – the Hardware Robot Operating System (H-ROS); an infra-structure to create interoperable robot components, NASA/ESA Conference on Adaptive Hardware and Systems (AHS) 2017, Pasadena, CA, USA, 24-27 July 2017, pp. 229-236. ISSN 2471-769X, ISBN 978-1-5386-3439-4. IEEE, New York, DOI: 10.1109/AHS.2017.8046383.
17. Jahn U. Wolff C. & Schulz P. Concepts of a modular system architecture for distributed robotic systems, Journal of Computers, 2019, Vol. 8, Issue 1, 16 p. ISSN 2073-431X. DOI: 10.3390/computers8010025.
18. Andreev V.P. The Concept of Using the Theory of Multi-Agent Systems to Design Control Systems for Mobile Robots with Modular Architecture, Proceedings of the International Sci-entific and Technological Conference EXTREME ROBOTICS-2019. SaintPetersburg: OOO "Izdatel'sko-poligraficheskii kompleks "Gangut" Publ., 2019, pp. 524-534.
19. Andreev V.P., Kim V.L., Pletenev P.F. Printsip polnoy funktsional'nosti moduley v geterogennykh modul'nykh mobil'nykh robotakh [The principle of full functionality of modules in heterogeneous modular mobile robots], Ekstremal'naya robototekhnika (ER-2017): Tr. mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Extreme robotics (ER-2017): Proceedings of the international scientific and technical conference]. Saint Peyersburg: TSNII RTK, 2017, No. 1, pp. 81-91.
20. Andreev V.P., Kim V.L. Razrabotka funktsional'nykh uzlov geterogennogo modul'nogo mobil'nogo robota [Development of functional nodes of a heterogeneous modular mobile ro-bot], Ekstremal'naya robototekhnika (ER-2017): Tr. mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Extreme robotics (ER-2017): Proceedings of the international scientific and tech-nical conference]. Saint Peyersburg: OOO «AP4Print», 2016, pp. 359-369.
21. Yurevich E.I. Osnovy robototekhniki: uchebnik dlya vtuzov [Fundamentals of robotics: a text-book for higher education institutions]. Leningrad: Izd-vo Mashinostroenie, Leningr. otd-nie, 1985, 271 p.
22. Siciliano B. Sciavicco L. [et al.]. Robotics Modelling, Planning and Control. Springer-Verlag London Limited, 2009, 632 p.
23. Siegwart R., Nourbakhsh I., Scaramuzza D. Introduction to Autonomous Mobile Robots. Cambridge: The MIT Press, 2004, 472 p.
24. Tekhnicheskie kharakteristiki servisnogo robota Care-O-bot 4 [Technical characteristics of the Care-O-bot 4 service robot]. Available at: https://www.care-o-bot.de/de/care-o-bot-4/technical-data.html/ (accessed 26 February 20).
25. Kiva Systems: Three Engineers, Hundreds of Robots, One Warehouse. Available at: https://spectrum.ieee.org/robotics/robotics-software/three-engineers-hundreds-of-robots-one-warehouse (accessed 26 February 20).
26. Servisnyy gumanoidnyy robot Rollin' Justin [Service humanoid robot Rollin ' Justin]. Available at: https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11427/#gallery/29202 (accessed 26 February 20).
Published
2020-07-10
Section
SECTION IV. COMMUNICATION, NAVIGATION, AND GUIDANCE