HARDWARRE-SOFTWARE FRAMEWORK FOR DEVELOPMENT OF MODULAR MOBILE ROBOTS WITH HIERARCHICAL ARCHITECTURE
Abstract
In this paper, we consider the main problems associated with the need to integrate various robotic components into a single system while increasing the complexity of the navigation algo-rithms of mobile robots. The work aims to present a hierarchical modular architecture for reconfigurable mobile robots as a solution to the problems posed. In this architecture, a mobile robot is considered as a combination of modules, which in turn consist of simpler blocks - submodules. Each submodule includes a low-power microcontroller and is responsible only for the basic func-tions. A set of submodules forms a module - a transport platform, a robot leg, a manipulator, etc. Besides, one of the main objectives of the project is to provide a framework based on this architec-ture for rapid prototyping of robots from unified modules. The article describes the manufactured prototypes of the modules, briefly discusses the protocol of intermodular interaction of submodules connected by a CAN bus. The results of experiments on testing the protocol are presented and their analysis is given. The efficiency of the proposed solution limitations and a short plan of fur-ther actions for the implementation of the project are shown.
References
2. HEBI Robotics. Available at: https://www.hebirobotics.com (accessed 26 February 20).
3. Iñigo-Blasco P., Diaz-del Rio F., Romero-Ternero M., Cagigas-Muñiz D. & Vicente-Diaz S. Robotics software frameworks for multiagent robotic systems development, Robotics and Au-tonomous Systems, 2012, Vol. 60, No. 6, pp. 803-821. ISSN: 0921-8890.
4. Herbrechtsmeier S., Korthals T., Schopping T. & Ruckert U. AMiRo: a modular & customiza-ble open-source mini robot platform, 20th International Conference on System Theory, Con-trol and Computing (ICSTCC), Sinaia. 2016, pp. 687-692.
5. Kalouche S., Rollinson D. & Choset H. Modularity for maximum mobility and manipulation: control of a reconfigurable legged robot with series-elastic actuators, IEEE International Sym-posium on Safety, Security, and Rescue Robotics (SSRR). West Lafayette, IN, USA, 18-20 Oct. 2015, pp. 1-8. IEEE, New York.
6. Virk G. CLAWAR Modularity for Robotic Systems, The International Journal of Robotics Research, March-April 2003, Vol. 22, No. 3-4, pp. 265-277. ISSN: 02783649.
7. Steinbauer G., Wotawa F. & Fraser G. A modular architecture for a multi-purpose mobile robot, Innovations in Applied Artificial Intelligence, IEA/AIE 2004. Lecture Notes in Comput-er Science, pp. 1007-1015. Springer, Berlin, Heidelberg. ISBN 978-3-540-24677-0. DOI: 10.1007/978-3-540-24677-0_103.
8. Taira T., Kamata N. & Yamasaki N. Design and implementation of reconfigurable modular humanoid robot architecture, IEEE/RSJ International Conference on Intelligent Robots and Systems 2005, 2-6 Aug. 2005, Edmonton, Alta., Canada. IEEE, New York. ISSN 2153-0858, pp. 1071-1076. DOI: 10.1109/IROS.2005.1545122.
9. Ahn H., Beak Y., Sa I., Kang W., Na J. and Choi J. Design of reconfigurable heterogeneous modular architecture for service robots, IEEE/RSJ International Conference on Intelligent Ro-bots and Systems 2008, 22-26 Sept. 2008, Nice, France, pp. 1313-1318, IEEE, New York. ISSN 2153-0858. ISBN 978-1-4244-2057-5. DOI: 10.1109/IROS.2008.4650706.
10. Hild M., Siedel T., Benckendorff C., Thiele C. & Spranger M. Myon, a New Humanoid, In: Language Grounding in Robots, Steels L., Hild M. (eds). Springer, 2012, pp. 25-44. ISBN 978-1-4614-3063-6. Boston, MA.
11. Roh S., Yang K., Park J., Moon H., Kim H.-S., Lee H. & Choi H. A modularized personal robot DRP I: design and implementation, IEEE Transactions on Robotics, 2009, Vol. 25, No. 2, pp. 414-425. ISSN 1552-3098. DOI: 10.1109/TRO.2009.2014499.
12. Magnenat S., Rétornaz P., Bonani M., Longchamp V. & Mondada F. ASEBA: a modular architec-ture for event based control of complex robots, IEEE/ASME Transactions on Mechatronics, 2010, Vol. 16, No. 2, pp. 321-329. ISSN 1083-4435. DOI: 10.1109/TMECH.2010.2042722.
13. Bonarini A., Matteucci M., Migliavacca M. & Rizzi D. R2P: An open source hardware and software modular approach to robot prototyping, Robotics and Autonomous Systems, 2014, Vol. 62, Issue 7, pp. 1073-1084. ISSN 0921-8890, DOI: 10.1016/j.robot.2013.08.009.
14. Losada, D.P., Fernández J.L.; Paz E. & Rafael S. Distributed and modular CAN-based architecture for hardware control and sensor data integration, Sensors, 2017, Vol. 17 (5), pp. 1013-1030. ISSN 1424-8220. DOI: 10.3390/s17051013.
15. Shmakov O., Korolev D., Popov D., Kitaev N. & Korotkov A. Modular Mobile Robotic Kit for Prototyping and Debugging of Control Algorithms, Proceedings of the 28th DAAAM Interna-tional Symposium, 2017, pp. 0950-0956.
16. Mayoral V., Hernandez A., Kojcev R., Muguruza I. Zamalloa I. Bilbao A. & Usategi L. The shift in the robotics paradigm – the Hardware Robot Operating System (H-ROS); an infra-structure to create interoperable robot components, NASA/ESA Conference on Adaptive Hardware and Systems (AHS) 2017, Pasadena, CA, USA, 24-27 July 2017, pp. 229-236. ISSN 2471-769X, ISBN 978-1-5386-3439-4. IEEE, New York, DOI: 10.1109/AHS.2017.8046383.
17. Jahn U. Wolff C. & Schulz P. Concepts of a modular system architecture for distributed robotic systems, Journal of Computers, 2019, Vol. 8, Issue 1, 16 p. ISSN 2073-431X. DOI: 10.3390/computers8010025.
18. Andreev V.P. The Concept of Using the Theory of Multi-Agent Systems to Design Control Systems for Mobile Robots with Modular Architecture, Proceedings of the International Sci-entific and Technological Conference EXTREME ROBOTICS-2019. SaintPetersburg: OOO "Izdatel'sko-poligraficheskii kompleks "Gangut" Publ., 2019, pp. 524-534.
19. Andreev V.P., Kim V.L., Pletenev P.F. Printsip polnoy funktsional'nosti moduley v geterogennykh modul'nykh mobil'nykh robotakh [The principle of full functionality of modules in heterogeneous modular mobile robots], Ekstremal'naya robototekhnika (ER-2017): Tr. mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Extreme robotics (ER-2017): Proceedings of the international scientific and technical conference]. Saint Peyersburg: TSNII RTK, 2017, No. 1, pp. 81-91.
20. Andreev V.P., Kim V.L. Razrabotka funktsional'nykh uzlov geterogennogo modul'nogo mobil'nogo robota [Development of functional nodes of a heterogeneous modular mobile ro-bot], Ekstremal'naya robototekhnika (ER-2017): Tr. mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Extreme robotics (ER-2017): Proceedings of the international scientific and tech-nical conference]. Saint Peyersburg: OOO «AP4Print», 2016, pp. 359-369.
21. Yurevich E.I. Osnovy robototekhniki: uchebnik dlya vtuzov [Fundamentals of robotics: a text-book for higher education institutions]. Leningrad: Izd-vo Mashinostroenie, Leningr. otd-nie, 1985, 271 p.
22. Siciliano B. Sciavicco L. [et al.]. Robotics Modelling, Planning and Control. Springer-Verlag London Limited, 2009, 632 p.
23. Siegwart R., Nourbakhsh I., Scaramuzza D. Introduction to Autonomous Mobile Robots. Cambridge: The MIT Press, 2004, 472 p.
24. Tekhnicheskie kharakteristiki servisnogo robota Care-O-bot 4 [Technical characteristics of the Care-O-bot 4 service robot]. Available at: https://www.care-o-bot.de/de/care-o-bot-4/technical-data.html/ (accessed 26 February 20).
25. Kiva Systems: Three Engineers, Hundreds of Robots, One Warehouse. Available at: https://spectrum.ieee.org/robotics/robotics-software/three-engineers-hundreds-of-robots-one-warehouse (accessed 26 February 20).
26. Servisnyy gumanoidnyy robot Rollin' Justin [Service humanoid robot Rollin ' Justin]. Available at: https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11427/#gallery/29202 (accessed 26 February 20).