TRANSFORMER CALCULATION METHOD DEVELOPMENT OF THE AUV CONTACT-LESS BATTERY CHARGING SYSTEM

  • V.A. Gerasimov The Institute of the problems sea technology, Far eastern branch to Russian Academy of the sciences
  • A.V. Komlev The Institute of the problems sea technology, Far eastern branch to Russian Academy of the sciences
  • A.Y. Filozhenko The Institute of the problems sea technology, Far eastern branch to Russian Academy of the sciences
Keywords: Autonomous underwater vehicle, battery charge, contactless power transmission, high-frequency transformer, design parameters, flat magnetic cores, calculation method

Abstract

The method of contactless underwater transmission of electricity to an autonomous under-water vehicle (AUV) for charging its rechargeable batteries has practically no alternative when organizing long underwater operation of the AUV. In such system, transformer with separated primary and secondary parts, which are separated by a constructive non-magnetic gap, deter-mined by the total thickness of the connecting walls, is used. The design and electromagnetic characteristics of the transformer significantly affect the overall system efficiency when perform-ing the main task - battery charge for a given time. The presence of a non-magnetic gap requires a special calculation procedure, for which the initial data should be the values of the AUV position-ing errors when underwater approaching the base, along with the parameters of the batteries charge process. The study task is the justification and development of a methodology for calculat-ing the design transformer parameters that meets the specified operating conditions. The research is based on mathematical modeling of electromagnetic processes in a transformer in the ANSYS Maxwell software package in combination with a full-scale experiment. The determining parame-ters in the form of the magnetic coupling coefficient and the winding relative magnetic permeabil-ity are founded; their use is justified for the complete identification of the studied transformer properties. A system of relative units is proposed in which the characterizing parameters have a constant value for cores connected by certain geometric relationships, which makes it easy to scale the results of the obtained technical solutions when changing the requirements for the transmitted electric power. As a result of research, a method for calculating the main design pa-rameters of transformers is proposed. The initial data in the calculation is taken as a combination of the required transformer electrical characteristics and its geometric relations when the re-quired restrictions are met for the permissible error of AUV automatic mooring to the dock-station. The results obtained apply to transformers with cup ferrite cores and with flat magnetic cores, which make it possible to form magnetic cores of the required sizes and configurations. The result of the calculation is the design of the transformer with electrical characteristics that best suit the conditions of its application. Experimental field studies convincingly confirm the correct-ness of the calculation method.

References

1. Gerasimov V.A. Filozhenko A.Yu. CHepurin P.I. Struktura sistemy elektrosnabzheniya avtonomnogo neobitaemogo podvodnogo apparata [Structure of the system noncontact energy issue of the autonomous undersea device], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 47-55.
2. Stanimir S. Valtchev, Elena N. Baikova, Luis R. Jorge. Electromagnetic Field as the Wireless Transporter of Energy, Facta Universitatis, Ser: Elec. Energ., December 2012, Vol. 25, No. 3, pp. 171-181.
3. Wang X., Shang J., Luo Z., Tang L., Zhang X., Li J. Reviews of power systems and environ-mental energy conversion for unmanned underwater vehicles, Renewable and Sustainable Energy Reviews, 2012, Vol. 16, Issue 4, pp. 1958-1970. Available at: http://www.sciencedirect.com/ sci-ence/article/pii/S1364032111006095 (accessed 27 February 2020).
4. Li-yan Q. Research on Design of Plate-type Electromagnetic Coupler in Underwater Inductive Power Transmission, MATEC Web of Conferences, 2015, Vol. 31, 5 p. DOI: https://doi.org/10.1051/matecconf/20153108004.
5. Saishenagha D., Devika M. Wireless charging system using high power, high frequency mag-netic interface for underwater electric vehicles, ARPN Journal of Engineering and Applied Sciences, 2016, Vol. 11, pp. 6977-6981.
6. Gerasimov V.A., Kuvshinov G.E., Popov O.S., Filozhenko A.Yu., Chepurin P.I. Ustroystvo dlya beskontaktnoy peredachi elektroenergii na podvodnyy ob"ekt [Device for contactless transmission of electric power to underwater object]. Patent 2564199 Russian Federation, MPK H02J 7/00 (2006/01). No. 2014123766/02; date of filing. 10.06.2014; date of publica-tion. 27.09.2015, Bull. № 27, 13 p.
7. Kraskovskiy M.V., Gerasimov V.A., Kuvshinov G.E., Filozhenko A.Yu. The Use of Resonance for Current Downloading of the Transistor Keys of the Inverter, International Journal of Con-trol Theory and Applications, 2016, Vol. 9, Issue 13, pp. 305-311.
8. Wang S., Song B., Duan G., Du X. Automatic wireless power supply system to autonomous underwater vehicles by means of electromagnetic coupler, J. Shanghai Jiaotong Univ. (Sci.), 2014, Vol. 19 (1), pp. 110-114.
9. Illarionov G.Yu., Shcherbatyuk A.F., Kushnerik A.A. Donnye prichal'nye ustroystva dlya avtonomnykh neobitaemykh podvodnykh apparatov [Docking station for autonomous under-water vehicles], Dvoynye tekhnologii [Dual technology], 2011, No. 1, pp. 13-21.
10. Hobson B., McEwen R., Erickson J., Hoover T., McBride L., Shane F., Bellingham J. The de-velopment and ocean testing of an AUV docking station for a 21” AUV. IEEE Xplore, 7 p. Doi: 10.1109/OCEANS.2007.4449318.
11. Gerasimov V.A., Kraskovskiy M.V., Filozhenko A.Yu., Chepurin P.I. Obespechenie peredachi zadannoy moshchnosti v sisteme beskontaktnogo zaryada akkumulyatornykh batarey podvodnogo apparata [Provision of transmission of a given power in the system of contactless charge of underwater vehicle batteries], Vestnik YuUrGU. Seriya «Energetika» [Bulletin of South Ural State University. Series “Power Engineering”], 2017, Vol. 17, No. 4, pp. 48-58.
12. Gerasimov V.A., Komlev A.V., Kraskovskiy M.V., Filozhenko A.Yu. Metodika rascheta konstruktivnykh parametrov transformatora beskontaktnoy sistemy zaryada akkumulyatornykh batarey podvodnogo apparata [Transformer design parameters calculation method of the non-contact charging system batteries underwater vehicle], Podvodnye issledovaniya i robototekhnika [Underwater Investigation and Robotics], 2018, No. 1 (25), pp. 21-29.
13. ANSYS Maxwell - Low Frequency Electromagnetic Field Simulation, ANSYS. Available at: http://www.ansys.com/Products/Electronics/ANSYS-Maxwell accessed 12 February 2018).
14. Gerasimov V.A., Komlev A.V., Kraskovskiy M.V., Filozhenko A.Yu., Chemezov I.A. Opredelenie konstruktivnykh parametrov transformatora sistemy beskontaktnoy peredachi elektroenergii [Determination of structural parameters of the transformer of the system non-contact power transmission], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engi-neering Sciences], 2018, No. 1 (195), pp. 208-219.
15. Gerasimov V.A., Filozhenko A.Yu., Illarionov G.Yu., Pashkeev S.V. Podvodnoe bazirovanie avtonomnykh neobitaemykh podvodnykh apparatov na donnykh prichal'nykh ustroystvakh [The basing of an autonomous underwater vehicle on the docking station], Strategicheskaya stabil'nost' [Strategic stability], 2018, No. 1 (82), pp. 30-36.
16. Haibing W., Kehan, Zh., Yan Zh., Baowei S. Comparison of two electromagnetic couplers in an inductive power transfer system for Autonomous Underwater Vehicle docking application, 2016, pp. 1-5. 10.1109/OCEANSAP.2016.7485443.
17. Gerasimov V.A., Kraskovskiy M.V., Filozhenko A.Yu. Metodika rascheta transformatora s ploskimi ekranami dlya beskontaktnoy sistemy zaryada akkumulyatornykh batarey podvodnogo apparata [The transformer calculating method with flat screens for the underwater vehicle non-contact battery charge system], Podvodnye issledovaniya i robototekhnika [Un-derwater Investigation and Robotics], 2019, No. 2, pp. 13-22.
18. RUPALIT PROFILE – pryamougol'nye mnogozhil'nye provoda [RUPALIT PROFILE - rec-tangular litz wire], DACPOL. Available at: https://www.dacpol.eu/ru/rupalit-profile-prjamougolnye-mnogozhilnye-provoda/product/rupalit-profile (accessed 27 February 2020).
19. Gerasimov V.A., Kopylov V.V., Kuvshinov G.E, Naumov L.A., Sebto Yu.G., Filozhenko A.Yu., Chepurin P.I. Matematicheskaya model' ustroystva dlya beskontaktnoy peredachi elektroenergii na podvodnyy ob"ekt [Mathematical modeling for contactless electric power transfer to underwater vehicle], Podvodnye issledovaniya i robototekhnika [Underwater Inves-tigation and Robotics], 2012, No. 2 (14), pp. 28-34.
20. Gerasimov V.A., Filozhenko A.Yu., Kraskovskiy M.V. Ustroystvo dlya beskontaktnoy peredachi elektroenergii na podvodnyy apparat [Device for contactless transmission of electric power to underwater vehicle]. Patent 2648231 Russian Federation. MPK H02J 50/12 (2016/01). No. 2017114815; date of filing. 26.04.2017; date of publication. 23.03.2018, Bull. No. 9, 15 p.
Published
2020-07-10
Section
SECTION III. POWER SYSTEMS, DRIVE SYSTEM AND SENSOR EQUIPMENT