DEVELOPMENT OF A COMBINED CONTROL SYSTEM FOR RESIDENT/INTERVENTION AUV BASED ON BEHAVIORAL METHODS

  • V.Y. Zanin JSC “Oceanos”
  • А. М. Maevskiy JSC “Oceanos”
  • I.V. Kozhemyakin St. Petersburg State Marine Technical University
Keywords: поведенческие методы, i-AUV, behavior tree, control system

Abstract

The aim of the study is the development of combined control systems by an autonomous un-derwater vehicle (AUV) of the intervention class and a manipulator complex installed on the AUV. Appliances of these types are an important component of underwater resident systems that allow you to expand the range of tasks performed by typical AUVs. The system is multi-level in nature, which allows to properly describe certain states and behavior of the device, depending on the task. The developed system is distinguished by its versatility and modularity, which implies the speed in setting up / adjusting the current tasks assigned to the AUV and the easy implementation and formation of additional tasks by the operator. As an example, we consider the problem associ-ated with the typical work of a resident AUV – sampling of soil fractions. The above results from field tests confirm the workability of the proposed approaches to control, taking into account ex-ternal non-deterministic perturbations of constant and monoharmonic effects. As part of the task, the process of forming the AUV states, transition commands between states, and the formation of a tree of device behavior is described. The scientific and practical novelty of the results presented in the article consists in the implementation of the first developed hardware-software complex for the AUV in the Russian Federation, which allows for the process of soil sampling in both automated and autonomous control modes.

References

1. Furuholmen M. [et al.]. Resident Autonomous Underwater VehicleSystems, A Review of Drivers, Applications, and Integration Options for the Subsea Oil and Gas Market. InProceedings of the Offshore Mediterranean Conference and Exhibition, 2013, pp. 20-22.
2. Wrzos-Kaminska M., Pettersen K.Y., Gravdahl J.T. Path following control for articulated in-tervention-AUVs using geometric control of reduced attitude, IFAC-PapersOnLine, 2019, pp. 192-197.
3. Dai P., Lu W., Le K., Liu D. Sliding Mode Impedance Control for contact intervention of an I-AUV: Simulation and experimental validation, Ocean Engineering, 2020, Vol. 196, 106855. ISSN 0029-8018. Available at: https://doi.org/10.1016/j.oceaneng.2019.106855.
4. Ridao [et al.]. Intervention AUVs: The next challenge, Annual Reviews in Control, 2015.
5. Zagatti R. [et al.]. FlatFish Resident AUV: Leading the Autonomy Era for Subsea Oil and Gas Operations, 2018, pp. 35-48.
6. Fahrni, L [et al.]. Scope and feasibility of autonomous robotic subseaintervention systems for offshore inspection, maintenance and repair, In Proceedings of the Proceedings ofthe 3rd International Conference on Renewable Energies Offshore (RENEW 2018), 2018, pp. 85-95.
7. Available at: https://www.marinetechnologynews.com/news/subsea-mining-thing-588211.
8. Gaykovich B.A., Zanin V.Yu., Taradonov V.S., Blinkov A.P., Kozhemyakin I.V., Tokarev M.Yu., Biryukov E.A. Kontseptsiya robotizirovannoy podvodnoy seysmorazvedki v podlednykh akvatoriyakh [The concept of robotic underwater seismic exploration in subglacial waters], Sb. rabot laureatov Mezhdunarodnogo konkursa nauchnykh, nauchno-tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie i osvoenie Arktiki i kontinental'nogo shel'fa 2018 goda [A collection of works by laureates of the International competition of scien-tific, scientific-technical and innovative developments aimed at the development and devel-opment of the Arctic and continental shelf in 2018], 2019, pp.-64-87.
9. Maevskiy A.M., Gaykovich B.A. Razrabotka gibridnykh avtonomnykh neobitaemykh apparatov dlya issledovaniya mestorozhdeniy uglevodorodov [Development of hybrid Autonomous uninhabited vehicles for the study of hydrocarbon deposits], Nauchno-tekhnicheskiy sbornik vesti gazovoy nauki [Scientific and technical collection of gas science news], 2019, No. 2 (39), pp. 29-40.
10. Zanin V.Yu., Maevskiy A.M. i dr. Razrabotka elementov podvodnykh robototekhnicheskikh rezidentnykh sistem na primere otechestvennogo avtonomnogo neobitaemogo podvodnogo apparata interventsionnogo klassa i soputstvuyushchikh tekhnologiy [Development of ele-ments of underwater robotic resident systems on the example of a domestic Autonomous unin-habited underwater vehicle of intervention class and related technologies], Sb. rabot laureatov Mezhdunarodnogo konkursa nauchnykh, nauchno-tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie i osvoenie Arktiki i kontinental'nogo shel'fa 2019 goda [A collection of works by laureates of the International competition of scientific, scientific-technical and innovative developments aimed at the development and development of the Arc-tic and continental shelf in 2019], 2019, pp. 14-22.
11. Maevskiy A.M., Gaykovich B.A. Razrabotka legkogo interventsionnogo avtonomnogo neobitaemogo podvodnogo apparata v tselyakh ispol'zovaniya v podvodnykh rezidentnykh sistemakh [Development of a light intervention Autonomous uninhabited underwater vehicle for use in underwater resident systems], Mater. XIV Vserossiyskoy nauchno-prakticheskoy konferentsii i X molodezhnoy shkoly-seminara «Upravlenie i obrabotka informatsii v tekhnicheskikh sistemakh» [Materials of the XIV all-Russian scientific and practical confer-ence and X youth school-seminar "Management and processing of information in technical systems"]. Rostov-om-Don; Taganrog: Izd-vo YuFU, 2019, pp. 83-98.
12. Inzartsev A.V., Pavin A.M., Bagnitskiy A.V. Planirovanie i osushchestvlenie deystviy obsledovatel'skogo podvodnogo robota na baze povedencheskikh metodov [Planning and im-plementation of actions of the survey underwater robot based on behavioral methods], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2013, No. 1 (15), pp. 4-16.
13. Inzartsev A.V. Metody formirovaniya povedeniya i proektirovaniya programmnogo obespecheniya obsledovatel'skogo avtonomnogo podvodnogo robota: dis. ... d-ra tekhn. nauk [Methods of behavior formation and software design of the survey Autonomous underwater robot: cand. of eng. sc. diss.]. Moscow, 2012, 297 p.
14. Marzinotto A., Colledanchise M., Smith C., Gren P. Towards a unifiedbehavior trees frame-work for robot control, In: 2014 IEEE InternationalConference on Robotics and Automation (ICRA), pp. 5420-5427.
15. Palma R. [et al.].Extending Case-Based Planning with Behavior Trees, in FLAIRS Confer-ence. AAAI Press, 2011, pp. 65-79.
16. Lim C.-U., Baumgarten R., and Colton S. Evolving Behaviour Trees for the Commercial Game DEFCON, in Applications of Evolutionary Computation. Springer, 2010, pp. 100-110.
17. Pshikhopov V.Kh., Shevchenko V.A., Medvedev M.Yu., & Gurenko B.V. Upravlenie raspredelennymi sistemami podvodnoy robototekhniki s ispol'zovaniem adaptivnoy etalonnoy modeli [Management of distributed systems of underwater robotics using an adaptive reference model], Inzhenernyy vestnik Dona [Don's engineering Bulletin], 2017, Vol. 45 (2 (45)), pp. 27.
18. Pshikhopov V.Kh., CHernukhin Yu.V., Fedotov A.A., Guzik V.F., Medvedev M.Yu., Gurenko B.V., P'yavchenko A.O., Saprykin R.V., Pereverzev V.A., & Priemko A.A. Razrabotka intellektual'noy sistemy upravleniya avtonomnogo podvodnogo apparata [Development of an intelligent con-trol system for an Autonomous underwater vehicle], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 3 (152), pp. 87-101.
19. Pshikhopov V.Kh., Medvedev M.Yu., Gurenko B.V. Metody avtomaticheskogo upravleniya morskimi podvizhnymi ob"ektami: monografiya [Methods of automatic control of marine mo-bile objects: monograph]. Rostov-on-Don, Taganrog: YuFU, 2016, 264 p.
20. Available at: https://www.designworldonline.com/using-behavior-trees-to-improve-the-modularity-of-auv-control-systems/.
21. Available at: https://oceanos.ru/news/339.
22. Available at: https://oceanos.ru/news/361.
23. Nishida Y. et al. Benthos Sampling by Autonomous Underwater Vehicle Equipped a Manipu-lator with Suction Device, 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 2019, pp. 1-4. Doi: 10.1109/UT.2019.8734330.
24. Weerakoon, Tharindu & Sonoda [et al.]. Underwater Manipulator for Sampling Mission with AUV in Deep-Sea, The Proceedings of JSME annual Conference on Robotics and Mechatron-ics (Robomec), 2017, pp. 1-11.
25. ai Huang [et al.]. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic organism capture, Ocean Engineering, 2020, pp. 15-27.
26. Prats, Mario & Romagós [et al.]. Reconfigurable AUV for intervention missions: A case study on underwater object recovery, Intelligent Service Robotics, 2015, pp. 19-31.
27. Available at: https://www.whoi.edu/press-room/news-release/whoi-underwater-robot-takes-first-known-automated-sample-from-ocean/.
28. Available at: https://oceanos.ru/news/355.
Published
2020-07-10
Section
SECTION II. CONTROL AND SIMULATION SYSTEMS