RESEARCH OF MARCHING PROPULSIONS THRUST CONTROL METHODS OF UNMANNED UNDERWATER VEHICLES

  • V.V. Kostenko Institute of Marine Technology Problems, Far Eastern Branch Russian Academy of Science
  • N.A. Naidenko Institute of Marine Technology Problems, Far Eastern Branch Russian Academy of Science
  • I.G. Mokeeva Institute of Marine Technology Problems, Far Eastern Branch Russian Academy of Science
  • A.Y. Tolstonogov Institute of Marine Technology Problems, Far Eastern Branch Russian Academy of Science
Keywords: Main propulsion, electric drive, propeller, mathematical model of propulsion, load tests, bollard mode characteristic, thrust control methods

Abstract

The aim of the study is to assess advantages and disadvantages of existing methods for con-trolling thrust of main propulsions (MP) of unmanned underwater vehicles (UUV). The mathemat-ical model of the MP developed by IMTP FEB RAS was adopted as the object of study. It’s consist-ing of a set of models of an electric motor, propeller and thruster control unit. During the research the following tasks were solved: development of the mathematical model of a brushless motor with refine parameters based on results of its load tests; development of the mathematical model of a propeller based on its action curves determined in accordance with the PROPS model test regres-sion base; development of the mathematical model of an thruster control unit (TCU); simulation of reaction of the thruster for stepwise change of desired thrust with the open-loop regulation of elec-tromotive torque, with feedback on the frequency of rotation and on measured thrust. As the result of simulation main propulsion reaction on stepwise change of desired thrust in bollard pull mode it has been established that different types of thrust control are only differed in transient response time and static control error is almost non-existent for all types of control. Herewith, twofold de-crease in transient response time with thrust and frequency control was found over torque control. This is due to increased power consumption of the motor in the transition process. Modeling of the MP control at the counter flow caused by the movement of the underwater vehicle showed that the control with thrust feedback has the minimum static error and transient response time is compara-ble with the speed control.

References

1. Ageev M.D., Kasatkin B.A., Kiselev L.V. i dr. Avtomaticheskie podvodnye apparaty [Automat-ic underwater vehicles]. Leningrag: Sudostroenie, 1981, 223 p.
2. Bozhenov Yu.A., Borkov A.P., Gavrilov V.M. i dr. Samokhodnye neobitaemye podvodnye apparaty [Self-propelled uninhabited underwater vehicles], under the General ed. of I.B. Ikonnikova. Leningrad: Sudostroenie, 1986, 264 p. 3. Blidberg D.R. The development of autonomous underwater vehicles (AUV); a brief summary, IeeeIcra, 2001, Vol. 4, pp. 1-12. 4. Griffiths G. (ed.). The technology and applications of autonomous underwater vehicles (Ocean Science and Technology, 2), 2003, Vol. 2. Abingdon, UK. Taylor & Francis, 360 p.
5. Ageev M.D., Kiselev L.V., Matvienko Yu.V. i dr. Avtonomnye podvodnye roboty: sistemy i tekhnologii [Autonomous underwater robots: systems and technology], under the General ed. of M.D. Ageeva. Moscow: Nauka, 2005, 223 p.
6. Voytov D.V. Avtonomnye neobitaemye podvodnye apparaty [Autonomous uninhabited under-water vehicles]. Moscow: Morkniga, 2015, 332 p.
7. Inzartsev A.V., Kiselev L.V., Kostenko V.V., Matvienko Yu.V., Pavin A.M., Shcherbatyuk A.F. Podvodnye robototekhnicheskie kompleksy: sistemy, tekhnologii, primenenie [Underwater ro-botic systems: systems, technologies, applications], responsible ed. L.V. Kiselev. Vladivostok, 2018, 368 p.
8. Matvienko Yu.V., Boreyko A.A., Kostenko V.V., L'vov O.Yu., Vaulin Yu.V. Kompleks robototekhnicheskikh sredstv dlya vypolneniya poiskovykh rabot i obsledovaniya podvodnoy infrastruktury na shel'fe [Complex robotic tools to perform searches and surveys of underwater infrastructure on the shelf], Podvodnye issledovaniya i robototekhnika [Underwater Investiga-tion and Robotics], 2015, No. 1 (19), pp. 4-15.
9. Kostenko V.V. Algoritmy upravleniya dvizhitel'no-rulevym kompleksom privyaznogo teleupravlyaemogo podvodnogo apparata [Algorithms for controlling the propulsion-steering complex of a tethered remote-controlled underwater vehicle], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2006, No. 9, pp. 31-36.
10. Kostenko V.V., Pavin A.M. K voprosu obespecheniya nezavisimosti upravlyayushchikh vozdeystviy dvizhitel'no-rulevogo kompleksa podvodnogo apparata [On the issue of ensuring the independence of control actions of the propulsion-steering complex of the underwater ve-hicle], Mater. 6-y nauchno-tekhnicheskoy konferentsii «Tekhnicheskie problemy osvoeniya mirovogo okeana». Vladivostok, 28 sentyabrya – 2 oktyabrya 2015 [Proceeding of the 6th sci-entific and technical conference "Technical problems of development of the oceans», Vladi-vostok, September 28 – October 2. 2015], pp. 118-123.
11. Kostenko V.V., Tolstonogov A.Yu. AUV Thrust Allocation with Variable Constraints, ADV. Syst. SciAppl, 2017, No. 3, pp. 1-8. Available at: http://ijassa.ipu.ru/ojs/ijassa/article/view/502.
12. Kostenko V.V., Tolstonogov A.Yu. Zadacha dekompozitsii upravleniya dvizheniem ANPA s uchetom izmenyayushchikhsya ogranicheniy marshevykh dvizhiteley [AUV's Motion Control Allocation with Variable Properties of Propulsion System], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2019, No. 1 (203), pp. 199-211.
13. Belen'kiy Yu.M., Zelenkov G.S., Mikerov A.G. Opyt razrabotki i primeneniya beskontaktnykh momentnykh privodov [Experience in the development and application of brushless torque drives]. Leningrad: LDNTP, 1987, 28 p.
14. Emel'yanov A.A., Beskletkin V.V., Agzamov I.M. i dr. Matematicheskoe modelirovanie dvigatelya postoyannogo toka v sisteme otnositel'nykh edinits v Matlab i Si [Mathematical modeling of a DC motor in a system of relative units in Matlab and C], Molodoy uchenyy [Young scientist], 2019, No. 11, pp. 1-7. Available at: https://moluch.ru/archiv/249/57298/ (accessed 23 February 2020). 15. Abu Sharkh S., Harris M.R., Crowder R.M., Chappell P.H., Stoll R.L. and Sykulski J.K. Design considerations for electric drives for the thrusters of unmanned underwater vehicles, 6th Europe-an Conference on peer Electronics and Applications, Sevilla, 1995, pp. 799-801.
16. Kostenko V.V., Mikhaylov D.N., Naydenko N.A. Opredelenie parametrov grebnogo elektroprivoda po rezul'tatam nagruzochnykh i basseynovykh ispytaniy [Determination of the parameters of the electric propeller drive according to the results of load and pool tests], Ma-ter. 5-y nauchno-tekhnicheskoy konferentsii «Tekhnicheskie problemy osvoeniya mirovogo okeana», Vladivostok, 30 sentyabrya – 4 oktyabrya 2013 [Proceeding of the 5th scientific and technical conference "Technical problems of development of the oceans», Vladivostok, Sep-tember 30 - October 4, 2013], pp. 389-395. ISBN 978-5-8044-1409-3.
17. 42 mm High Torque Brushless Motor. Available at: http://motor-fulling.com/6-7-high-torque-brushless-motor.html (accessed 25 February 2020).
18. Kostenko V.V., Mikhaylov D.N., Nechaev V.D., Tolstonogov A.Yu. Otsenka trebovaniy k grebnomu elektroprivodu avtonomnogo neobitaemogo podvodnogo apparata [Assessment of requirements for the rowing electric drive of an Autonomous uninhabited underwater vehicle], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2017, No. 1-2 (186-187), pp. 97-108.
19. Daidola J.C, Johnson F.M. Propeller Selection and Optimization Program, Manual for the Society of Naval Architects and Marine. NY.: Society of Naval Architects and Marine, 1992, 258 p.
20. Pantov E.N, Makhin N.N., Sheremetov B.B. Osnovy teorii dvizheniya podvodnykh apparatov [Fundamentals of the motion's theory of underwater vehicles]. Leningrad: Sudostroenie, 1973, 210 p.
21. Entsiklopediya po mashinostroeniyu XXL. Oborudovanie, materialy, mekhanika [Encyclope-dia of Mechanical Engineering XXL. Equipment, materials, mechanics]. Available at: https://mash-xxl.info/info/296203/ (accessed 19 February 2020).
22. Sorensen A.J. "3.6 Methods for Thrust Control Asgeir J. Sorensen". The Ocean Engineering Handbook. 2000 Dec 28.
Published
2020-07-10
Section
SECTION II. CONTROL AND SIMULATION SYSTEMS