RESEARCH AND COMPUTATIONAL MODELING OF HEAT-REMOVING PROPERTIES OF THE RADIATOR EXTENDED SURFACE
Abstract
In this work the research of heat-removing properties of extended surfaces areas, for example,
finned and needle radiators, for assessment of efficiency of thermal field and heat extraction
distribution is described. Also the description of the carried-out computational modeling is provided
in the Fluent processor of the final and element analysis universal program system Ansys.
The relevance of the selected subject is confirmed by the fact that one of the most important and
difficult tasks arising when developing the electronic equipment is a withdrawal of heat generated
by it. At a current steady trend in reduction of dimensions of electronic devices this problem does
not disappear, and on the contrary, becomes more and more sharp, and that is stronger, than device
high power less its physical volume, and not only the efficiency of heat extraction, but also
dimensions and, of course, reliability of electronic devices operation depends on constructions of
heat-removing elements. Applicable, for example, to the electronic equipment, a source of thermal
power is heatterminated element. In that case when heat conductivity of the environment is applied
to normalization of its thermal mode heat sinks (radiators) insufficiently – heat-removing constructions
from metal with big coefficient of heat conductivity (copper, aluminum) as the heat conductivity
coefficient in metals is higher. In work the conclusion is drawn that for a solution of a
complex problem of efficiency assessment in the heat sink for the purpose of decrease in temperature
of heatterminated element, it is necessary to use an electrothermal analogy.
References
Izd-vo TTI YuFU, 2009, 132 p.
2. Cengel Y.A. Heat transfer. A practical approach. India: McGraw-Hill Education, 2003, 503 р.
3. Konovalov V.I., Pakhomov A.N., Gatapova N.Ts., Koliukh A.N. Metody resheniya zadach
teplomassoperenosa. Teploprovodnost' i diffuziya v nepodvizhnoy srede [Methods for solving
heat and mass transfer problems]. Tambov, 2012, 462 p.
4. Lukanin V.N., Shatrov M.G., Kamfer G.M. Teplotekhnika [Thermotechnics]. Moscow:
Vysshaya shk., 2006, 617 p.
5. Baskakov A.P., Berg B.V., Vitt O.K. Teplotekhnika [Thermotechnics]. Moscow:
Energoatomizdat, 1991, 224 p.
6. Alifanov, O.M. Obratnye zadachi v issledovanii slozhnogo teploobmena [Inverse problems in
the study of complex heat transfer]. Moscow: Yanus-K, 2009, 300 p.
7. Siegal R., Howell J.R. Thermal Radiation Heat Transfer. New York: Hemisphere Publishing
Corp., 1990, 256 p.
8. Webb R.L. Principles of Enhanced Heat Transfer. New York: John Wiley, 1994, 377 p.
9. Kraus A.D. Okhlazhdenie elektronnogo oborudovaniya [Cooling of electronic equipment].
Leningrad: Energiya, 1971, 243 p.
10. Chernyshev A.A. Osnovy nadezhnosti poluprovodnikovykh priborov i integral'nykh
mikroskhem [Fundamentals of reliability of semiconductor devices and integrated circuits].
Moscow: Radio i svyaz', 1988, 560 p.
11. Rotkop L.L., Spokoynyy Yu.E. Obespechenie teplovykh rezhimov pri konstruirovanii
radioelektronnoy apparatury [Providing thermal conditions in the design of electronic equipment].
Moscow: Sovetskoe radio, 1976, 230 p.
12. Volokhov V.A., Khrychikov E.E. Sistemy okhlazhdeniya teplonagruzhennykh radioelektronnykh
priborov [Cooling systems for heat-loaded electronic devices]. Moscow: Sovetskoe radio. 1975,
144 p.
13. Incropera F.P. Fundamentals of heat transfer. New York: John Wiley & Sons, 2006, 604 p.
14. Turan B., Oztop H.F. Analysis of heat transfer in a heated tube with a different typed disc insertion,
Thermal Science, 2012, Vol. 16 (1), pp. 139-149.
15. Mo X., Yu B. Study of heat transfer performance of quench cooler with oval jacket, Petrochemical
Equipment, 2009, Vol. 38 (4), pp. 18-22.
16. Beitelman A.D., Marsh C.P., Carlson T.A. Low heat-transfer coatings in heat distribution systems,
NACE - International Corrosion Conference Series, 2009, pp. 215-222.
17. Dimitrienko Yu.I. Thermal stresses in composite structures under high temperatures, Solid
Mechanics and its Applications, 2016, Vol. 224, pp. 269-307.
18. Paliy A.V., Zamkov E.T. Programmnoe obespechenie rascheta teplovogo rezhima elektronnoy
apparatury. Sv. o reg. elektron. resursa №11806 [Software for calculating the thermal mode of
electronic equipment. Certificate of registration of electronic resource No. 11806], 2008.
19. Paliy A.V., Zamkov E.T. Mekhanizm vozniknoveniya treniya i soprotivleniya tela v gazovom
potoke [Izvestiya SFedU. Engineering Sciences], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2013, No. 1 (138), pp. 197-202.
20. Pribyl'skiy A.V., Chernov N.N., Paliy A.V. Chislennoe modelirovanie teplootvodyashchego tela
v aerodinamicheskom potoke v protsesse konvektivnogo teplomassoperenosa [Numerical simulation
of a heat-withdrawing body in an aerodynamic flow during convective heat and mass
transfer], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2018,
No. 2 (196), pp. 155-163.
21. Met'yuz D.G., Fink K.D. CHislennye metody. Ispol'zovanie MATLAV [Numerical method.
Using MATLAB]. Moscow: Izd. dom «Vil'yams», 2001, 720 p.
22. Porshnev S.V. Komp'yuternoe modelirovanie fizicheskikh protsessov s ispol'zovaniem paketa
MathCad [Computer simulation of physical processes using the MathCad package]. M.:
Goryachaya liniya, 2002, 252 p.
23. Chapra S.C., Canale R.P. Numerical Methods for Engineers. New York: McGrawHill, 1998,
313 p.
24. Lewis R.W., Morgan K., Zienkiewicz O.C. Numerical methods in heat transfer. New York:
John Wiley & Sons, 1981, 512 p.
25. Kuzhiveli B.T. Modeling combined heat transfer in an all solid state optical cryocooler, IOP
Conference Series: Materials Science and Engineering, 2017, Vol. 278 (1), pp. 012136.