EVALUATION OF THE ERROR IN THE MEAN SPEED MEASUREMENT WITH USING THE HOT-WIRE ANEMOMETER IN THE TURBULENT GAS FLOWS

  • E.D. Pometun State Educational Institution of Higher Professional Education “Donetsk National University”
  • N.I. Bolonov State Educational Institution of Higher Professional Education “Donetsk National University”
  • V.V. Belousov State Educational Institution of Higher Professional Education “Donetsk National University”
  • V.N. Lebedev State Educational Institution of Higher Professional Education “Donetsk National University”
  • P. S. Gelashvili State Educational Institution of Higher Professional Education “Donetsk National University”
Keywords: The hot-wire anemometer, calibration characteristic, step test signal, time constant

Abstract

The study of the main processes taking place in the atmosphere is of considerable interest to
science. Monitoring of physical processes in most cases is carried out using an instrumental method
based on the introduction of a measuring probe into the test medium, which is widely used hot-wire
transducers. The aim of this work is to identify and analyze the sources of errors of measurement the
results obtained using a constant temperature hot-wire anemometer in turbulent gas flows and develop
recommendations for minimizing them. The article discusses the sources of errors that arise when
measuring a constant temperature in a turbulent gas flow with an anemometer, as well as suggestions
for minimizing them. The considered sources of errors are conventionally divided into two
types. Errors of the first type are due to the use of incorrect algorithms for processing the output
signal of the hot-wire anemometer, and of the second type due to the features of the sensor in the
feedback system. It is determined that in order to eliminate the error of the first type, it is necessary to
exclude integrating circuits in the hot-wire anemometer circuit, which weaken the amplitude of turbulent
pulsations. An error of the second type arises due to the asymmetric reaction of the hot-wire
anemometer to increase and decrease the flow rate, i.e. for heating and cooling the sensing element
(sensor). The second type of error depends on the flow rate, turbulence intensity, and velocity pulsation
spectrum. As well as the error of the first type, the compensation of this error requires special
technical solutions in the development of the electronic circuit of the hot-wire. To solve this problem,
the dynamic characteristics of the hot-wire under dynamic conditions were investigated using an
aerodynamic bench creating a stratified airflow simulating a step test signal by rapidly moving a
constant temperature sensor the hot-wire between two streams. The results can be used to develop
devices and programs for measurements in turbulent flows.

References

1. Kuznetsov D.N., Zori A.A., Kochin A.E. Izmeritel'nye mikroprotsessornye sistemy skorosti i
temperatury potokov gaza i zhidkosti [Measuring microprocessor systems for the speed and
temperature of gas and liquid flows]. Donetsk: GVUZ «DonNTU», 2012, 226 p.
2. Pometun E.D., Kuznetsov D.N. Sravnenie chuvstvitel'nosti termoanemometrov dvukh tipov:
impul'snogo i postoyannoy temperatury [Comparison of the sensitivity of two types of
thermoanemometers: pulse and constant temperature], Sistemnyy analiz i informatsionnye
tekhnologii v naukakh o prirode i obshchestve [System analysis and information technologies
in the natural and social Sciences], 2013, No. 1 (4)–2 (5), pp. 107.
3. Yarin L.P., Genkin A.L., Kukes V.I. Termoanemometriya gazovykh potokov
[Thermoanemometric gas streams]. Leningrad: Mashinostroenie, Leningr. otd-nie, 1983, 198 p.
4. Ukrainskiy Yu.D. Approksimatsiya stepennoy funktsiey teplootdachi termistora v rezhime
datchika termoanemometra postoyannoy temperatury [Approximation by a power function of
thermistor heat transfer in the mode of a constant temperature thermoanemometer sensor],
Tezisy dokladov [Abstracts of reports]. Melekino, 2002, 3 p.
5. Rifai D., Ibrahim M.T., Abdalla A.N., Khamshah N., Wahid S.R. Temperature compensation
of hot wire mass air flow sensor by using fuzzy temperature compensation scheme, Scientific
Research and Essays, No. 8 (4), pp. 178-188.
6. Ball S.J., Ashforth-Frost S., Jambunathan K., Whitney C.F. Appraisal of a hot-wire compensation
technique for velocity measurements in non-isothermal flows, International Journal of
Heat and Mass Transfer, 1999, Vol. 42, pp. 3097-3102.
7. Miheev N.I., Molochnikov V.M., Kratirov D.V., Hayrnasov K.R., Zanko P.S. Hot-wire
measurements with automatic compensation of ambient temperature change, Thermal science,
2015, Vol. 19, No. 2, pp. 509-520.
8. Pometun E.D., Lebedev V.N. Issledovanie funktsiy approksimatsii graduirovochnoy
kharakteristiki termoanemometra v neizotermicheskom gazovom potoke [Research of functions
of approximation of the calibration characteristic of a thermoanemometer in a nonisothermal
gas stream], Sb. nauchnykh trudov «Sistemnyy analiz i informatsionnye tekhnologii
v naukakh o prirode i obshchestve» [Collection of scientific papers "System analysis and information
technologies in the natural and social Sciences"], 2015, No. 1 (8)–2 (9)'.
9. Opredelenie dinamicheskikh kharakteristik analogovykh SI s sosredotochennymi parametrami:
MI 2090-90 [Vved. 01.01.90] [Determination of dynamic characteristics of analog SI with concentrated
meters: MI 2090-90 [Introduction 01.01.90]]. Moscow: Izd-vo standartov, 1990, 34 p.
10. Bolonov M.І., Chupіs D.A., Kuznetsov D.M. Sposіb pryamogo viznachennyadinamіchnikh
kharakteristik termoperetvoryuvachіv [Method for direct determination of dynamic characteristics
of thermal converters], Patent 95326 U. Ukraїna, MPK G01P 21/00, G01K 15/00; applicant
and patent holder Donetsk national University. No. u201405589; announced 26.05.2014;
published 25.12.2014, Bull. No. 24.
11. Pometun E.D., Bolonov N.I., Belousov V.V., Lebedev V.N. Modelirovanie funktsii KHevisayda v
rabochey chasti aerodinamicheskoy truby [Modeling of the Heaviside function in the working
part of the wind tunnel], Sb. statey 9-y mezhdunarodnoy nauchno-prakticheskoy konferentsii
«Sostoyanie i perspektivy razvitiya sel'skokhozyaystvennogo mashinostroeniya» [Collection of articles
of the 9th international scientific and practical conference "State and prospects of development
of agricultural engineering"]. Rostov-on-Don: DGTU, 2016, pp. 267-269.
12. Pometun E.D., Bolonov N.I., Lebedev V.N. Optimizatsiya suzhayushchego ustroystva dlya
modelirovaniya funktsii Khevisayda v rabochey chasti aerodinamicheskoy truby [Optimization of
the constricting device for modeling the Heaviside function in the working part of the wind tunnel
], Mater. I Mezhdunarodnoy nauchnoy konferentsii (Donetsk, 16-18 maya 2016 g.) [Materials
of the I International scientific conference (Donetsk, may 16-18, 2016)]. Vol. 1. Fizikomatematicheskie,
tekhnicheskie nauki i ekologiya [Physico-mathematical, technical Sciences and
ecology], ed. by prof. S.V. Bespalovoy. Rostov-on-Don: Izd-vo YuFU, 2016, pp. 184-186.
13. Eichstädt S. Analysis of Dynamic Measurements - Evaluation of dynamic measurement uncertainty,
2012.
14. Dichev D., Koev H., Bakalova T., Louda P. A Model of the Dynamic Error as a Measurement
Result of Instruments Defining the Parameters of Moving Objects, Measurement Science Review,
2014, Vol. 14 (4), pp. 183-189.
15. Elster C., Link A. Analysis of dynamic measurements: compensation of dynamic error and
evaluation of uncertainty, In Advanced Mathematical & Computational Tools in Metrology
VIII, Series on Advances in Mathematics for Applied Sciences, 2009, Vol. 78, pp. 80-89.
World Scientific New Jersey.
16. Kuznetsov D.N., Chupis D.A. Issledovanie fizicheskoy modeli stupenchatogo ispytatel'nogo
vozdeystviya dlya opredeleniya dinamicheskikh kharakteristik termopreobrazovateley [Research
of a physical model of step-by-step test action for determining the dynamic characteristics
of thermal converters], Nauchnye trudy DonNTU. Seriya: vychislitel'naya tekhnika i
avtomatizatsiya [Scientific works of DonNTU. Series: computer engineering and automation],
2016, No. 1 (26), pp. 202-209.
17. Esward T.J., Elster C., Hessling J.P. Analysis of dynamic measurements: new challenges
require new solutions, in Proc. of XIX IMEKO World Congress on Fundamental and Applied
Metrology, 2009.
18. Pometun E.D. Obrabotka vykhodnogo signala termoanemometra postoyannoy temperatury v
real'nom masshtabe vremeni s ispol'zovaniem programmnogo obespecheniya NI LabVIEW
[Processing the output signal of a constant temperature thermoanemometer in real time using
NI LabVIEW software], Mater. Mezhdunarodnogo molodezhnogo nauchnogo foruma
«LOMONOSOV-2019» [Materials of the international youth scientific forum
"L M N S V-2019"], resp. ed. I.A. Aleshkovski , A.V. Andriyanov, E.A. Antipov. Moscow:
MAKS Press, 2019, pp. 200-202.
19. Brunn H.H. Linearization and hot wire anemometry, Journal of Physics & Scientific Instruments,
1971, Vol. 4, pp. 815-820.
20. Chen J., & Chang Liu. Development and characterization of surface micromachined, out-ofplane
hot-wire anemometer, Journal of Microelectromechanical Systems, 2003, No. 12 (6),
pp. 979-988. Doi: 10.1109/jmems.2003.820261.
Published
2020-02-26
Section
SECTION II. MODELING AND ANALYSIS OF DEVICE PARAMETERS