PROCESS TECHNOLOGY OF MULTIELECTRODE MICROPROBE FOR A MINIMALLY INVASIVE NEUROCOMPUTER INTERFACE

  • E. Y. Gusev Southern Federal University
  • J.Y. Jityaeva Southern Federal University
Keywords: Neurocomputer interface, microprobe, neuroprobe, monocrystalline silicon, surface micromachining, anisotropic wet etching, process technology

Abstract

The work is devoted to the development of technology of manufacturing a multielectrode microprobe
(neuroprobe) using surface micromachining and anisotropic wet etching of silicon based
on the infrastructure of the Research and Education Centre "Nanotechnologies" of Southern Federal
University. The development was carried out to implement a typical design of the neuroprobe, which
consists of a base, several beams of rectangular shape with a pointed end and electrical interface.
The process flow based on 4 photolithography steps and includes 18 main operations like substrate
cleaning, thermal oxidation, plasma-chemical deposition of silicon oxide an nitride d, rapid thermal
annealing, plasma-chemical etching of silicon nitride and oxide, isotropic and anisotropic wet etching
of silicon oxide and monocrystalline silicon, and metals deposition by electron-beam evaporation.
Experimental researches of anisotropic wet etching of monocrystalline silicon in a potassium
hydroxide solution through a mask of plasma deposited silicon oxide, as well as the effect of rapid
thermal annealing on the mask resistance were conducted. The effect of the solution concentration
(from 10 to 40%) on the etching rate and surface roughness at 80 °C was studiedThe etching in 27–
30 % KOH solution leads to formation of a surface with a minimum average roughness value of 13
nm. The etching rates of monocrystalline silicon and silicon oxide were 1.5 μm/min for (100) face,
3 nm/min for (111) face, and 10 nm/min, respectively. Rapid thermal annealing at 600 °C for 3 min
increases resistance of silicon oxide the alkaline solution by 2 times. The developed technology was
tested on the example of formation a two beam neuroprobes on 420 thick 4’’ silicon wafer (100). A
series neuroprobe structures was fabricated. The developed technology could be used for the fabrication
of neuroprobes with various numbers and placement of beams and electrodes.

References

1. Seymour J.P., Wu F., Wise K.D., Yoon E. State-of-the-art MEMS and microsystem tools for
brain research, Microsystems & Nanoengineering, 2017, Vol. 3, pp. 16066.
2. HajjHassan M., Chodavarapu V., Musallam S. NeuroMEMS: Neural Probes Microtechnologies,
Sensors, 2008. – Vol. 8, No. 10, pp. 6704-6762.
3. Govindarajan A.V., Je M., Park W.-T., Achyuta A.K.H. MEMS as implantable neuroprobes, in
MEMS for Biomedical Applications. Woodhead Publishing Limited, 2012, pp. 361-395.
4. Ruther P., Herwik S., Kisban S., Seidl K., Paul O. Recent progress in neural probes using silicon
MEMS technology, IEEJ Transactions on electrical and electronic engineering, 2010,
Vol. 5, pp. 505-515.
5. Herwik S., Kisban S., Aarts A.A.A., Seidl K., Girardeau G., Benchenane K., Zugaro M.B., Wiener
S.I., Paul O., Neves H.P. Fabrication technology for silicon-based microprobe arrays used
in acute and sub-chronic neural recording, Journal of Micromechanics and Microengineering,
2009, Vol. 19, No. 7, pp. 074008.
6. Archer M.J., Ligler F.S. Fabrication and characterization of silicon micro-funnels and tapered
micro-channels for stochastic sensing applications, Sensors, 2008, Vol. 8, pp. 3848-3872.
7. Gao K., Li S., Zhuang L., Qin Z., Zhang B., Huang L., Wang P. In vivo bioelectronic nose using
transgenic mice for specific odor detection, Biosensors and Bioelectronics, 2018, Vol. 102,
pp. 150-156.
8. Norlin P., Kindlundh M., Mouroux A., Yoshida K., Hofmann U.G. A 32-site neural recording
probe fabricated by DRIE of SOI substrates, Journal of Micromechanical and
Microengineering, 2002, Vol. 12, pp. 414-419.
9. Raducanu B.C., Yazicioglu R.F., Lopez C.M. [et al.]. Time Multiplexed Active Neural Probe
with 1356 Parallel Recording Sites, Sensors, 2017, Vol. 17, No. 10, pp. 2388.
10. Sokolov L.V., Zhukov A.A., Parfenov N.M., Anurov A.E. Analiz sovremennykh tekhnologiy
ob"emnogo mikroprofilirovaniya kremniya dlya proizvodstva chuvstvitel'nykh elementov
datchikov i MEMS [Analysis of modern technologies for volumetric micro-profiling of silicon
for the production of sensitive elements of sensors and MEMS], Nano- i mikrosistemnaya
tekhnika [Nano-and Microsystem technology], 2014, No. 10, pp. 27-35.
11. Nanotekhnologii v mikroelektronike [Nanotechnology in microelectronics], ed. by O.A. Ageeva,
B.G. Konopleva. Moscow: Nauka, 2019, 511 p.
12. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k
tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTS
«Nano-tekhnologii» YuFU [An integrated approach to the technological equipment of the center
for applied research. Experience of implementation at REC "Nanotechnology" of Southern
Federal University], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2011, No. 4 (117), pp. 207-210.
13. Alekseev A., Ageev O., Gusev E., Konoplev B., Lysenko I., Petrov S. Tandem ZAO «NTO» i
NOTS «Nanotekhnologii» YuFU – primer uspeshnogo vzaimodeystviya proizvodstva i nauki
[Tandem of JSC "NTO"and REC "Nanotechnologies" of the southern Federal University-an
example of successful interaction of production and science], Elektronika: nauka, tekhnologii,
biznes [Electronics: science, technology, business], 2016, No. 7 (157), pp. 78-83.
14. Malokhatko S.V., Gusev E.Yu., Ageev O.A. Razrabotka strelovidnogo kantilevera dlya
mnogochastotnoy atomno-silovoy mikroskopii [The development of the arrow-shaped cantilever
for multi-frequency atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2019, No. 3 (205), pp. 171-178.
15. Gusev E.Yu. Razrabotka tekhnologii izgotovleniya mikromekhanicheskikh akselerometra na
osnove polikristallicheskogo kremniya metodami poverkhnostnoy mikroobrabotki [Development
of technology for the manufacture of micromechanical acceleration sensors based on
polycrystalline silicon by surface micromachining], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2016, No. 10 (183), pp. 52-64.
16. Kirt R.W., Muller R.S. Etch rates for micromachining processing, Journal of
microelectromechanical systems, 1996, Vol. 5, No. 4, pp. 256-269.
17. Gusev E.Yu., Jityaeva J.Y., Avdeev S.P., Ageev O.A. Effect of substrate temperature on the
properties of plasma deposited silicon oxide thin films, Journal of Physics: Conference Series,
2018, Vol. 1124, No. 2, pp. 022034.
18. Gusev E.Yu., ZHityaeva Yu.Yu., Kolomiytsev A.S., Gamaleev V.A., Kots I.N., Bykov A.V.
Issledovanie rezhimov zhidkostnogo travleniya zhertvennogo sloya SiO2 dlya formirovaniya
mikromekhanicheskikh struktur na osnove Si*/SiO2/Si [Investigation of the modes of liquid
etching of the SiO2 sacrificial layer for the formation of micromechanical structures based on
Si* / SiO2/Si /], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2015, No. 2 (163), pp. 236-245.
19. Konoplev B.G., Ageev O.A, Smirnov V.A., Kolomiytsev A.S., Serbu N.I. Modifikatsiya zondov
dlya skaniruyushchey zondovoy mikroskopii metodom fokusirovannykh ionnykh puchkov
[Modification of probes for scanning probe microscopy using focused ion beams],
Mikroelektronika [Microelectronics], 2012, Vol. 41, No. 1, pp. 47-56.
20. Ageev O.A., Gusev E.Yu., Kolomiytsev A.S., Lisitsyn S.A., Bykov A.V. Fabrication of tunnelling
gap of nanomechanical accelerometer by focused ion beam, Journal of Physics: Conference
Series, 2016, Vol. 741, No. 1, pp. 012177.
21. Kots I.N., Kolomiytsev A.S., Lisitsyn S.A., Polyakov V.V., Klimin V.S., Ageev O.A. Issledovanie
rezhimov profilirovaniya poverkhnosti kremniya metodom fokusirovannykh ionnykh puchkov
[Investigation of silicon surface profiling modes using focused ion beams], Mikroelektronika
[Microelectronics], 2019, Vol. 48, No. 2, pp. 97-105.
Published
2020-02-26
Section
SECTION I. ELECTRONICS AND NANOTECHNOLOGY