STUDY OF THE TWO-STAGE GROWTH MODE IN GaAs/Si HETEROSTRUCTURES BY THE METHOD OF MOLECULAR RADIATION EPITAXIA

  • А. А. Geldash Southern Federal University
  • М. М. Eryomenko Southern Federal University
  • V.S. Klimin Southern Federal University
  • N. E. Chernenko Southern Federal University
  • J. Y. Jityaeva Southern Federal University
  • V. N. Dzhuplin Southern Federal University
Keywords: Molecular beam epitaxy, GaAs, thin films, two-stage technology, optoelectronic devices

Abstract

The aim of this work is to develop manufacturing technology, the formation and study of
GaAs/Si heterostructures created by a two-stage method, as well as comparison with GaAs/Si
heterostructures obtained by a one-stage method. In this work, we study the two-stage growth
regimes of GaAs/Si heterostructures obtained by molecular beam epitaxy (MBE), which can be
used as the basis for creating elements of optoelectronics. The morphology of the surface of
GaAs/Si heterostructures and structures created using embedded layers (buffer layers) were studied.
According to the results of the morphology of the surface of the GaAs layer, it was revealed
that the surface of the sample created by the single-stage technology was formed by single-crystal
GaAs cells with sizes 1.5x2 μm. At the same time, the surface of the sample formed by the twostage technique has smaller GaAs single crystals with sizes of 250x250 nm. In the first and second
cases, the films consist of separate single-crystal blocks, which in the process of growth merged with
each other, forming a continuous film, with a certain surface roughness coefficient, which is visible
from SEM images. Technological conditions for the deposition of GaAs films by the MBE method on
Si, as well as the SiO2 layer on Si obtained by plasma-chemical deposition in an inductively coupled
plasma, have been developed. Windows were formed in the SiO2 layer by photolithography and
chemical etching with a diameter of 4 μm. The methods of two-stage and one-stage growth of GaAs
on Si are compared. The distribution of the surface potential was studied, and a band energy model
was constructed. The current-voltage characteristics of the obtained GaAs/Si heterostructures under
the influence of radiation and in the dark were constructed and studied. During the study of the samples,
it was found that heterostructures grown by the two-stage growth technique have a photosensitivity,
which is especially pronounced with ultraviolet radiation, at a wavelength of light radiation of
about 400 nm. The results of the study suggest the promise of using GaAs/Si heterostructures created
by the two-stage growth technique as the basis for creating optoelectronic devices.

References

1. Klimin V.S., Rezvan A.A., Ageev O.A. Issledovanie primeneniya plazmennykh metodov dlya
formirovaniya polevykh emitterov na osnove uglerodnykh nanorazmernykh struktur [Research
of using plasma methods for formation field emitters based on carbon nanoscale structures],
Journal of Physics: Conference Series [.Journal of Physics: Conference Series], 2018,
Vol. 1124, pp. 071020.
2. Tominov R.V., Smirnov V.A., Avilov V.I., Fedotov A.A., Klimin V.S., Chernenko N.E.
Formirovanie memristornykh struktur ZnO metodom skaniruyushchey zondovoy nanolitografii
[Formation ZnO memristor structures by scratching probe nanolithography], IOP Conf.
Series: Materials Science and Engineering, 2018, Vol. 443, pp. 012036.
3. Murdick D.A., Wadley H.N., Zhou X.W. Mekhanizmy kondensatsii para, obogashchennogo
mysh'yakom, na poverkhnosti GaAs (001) [Condensation mechanisms of an arsenic-rich vapor
on GaAs (001) surfaces], Phys. Rev. B, 2007, Vol. 75, pp. 125318.
4. Vakulov Z.E., Ivonin M., Zamburg E.G., Klimin V.S., Volik D.P., Golosov D.A., Zavadskiy
S.M., Dostanko A.P., Miakonkikkh A.V., Klemente I.E., Rudenko K.V., Ageev O.A. Razmernye
effekty v tonkikh plenkakh LiNbO3, poluchennykh metodom impul'snogo lazernogo
napyleniya [Size effects in LiNbO3 thin films fabricated by pulsed laser deposition], Journal
of Physics: Conference Series, 2018, Vol. 1124, pp. 022032.
5. Balakirev S.V., Eremenko M.M., Mikhaylin I.A., Klimin V.S., Solodovnik M.S. Kapel'naya
epitaksiya nanostruktur In/AlGaAs na As-stabilizirovannoy poverkhnosti [Droplet epitaxy of
In/AlGaAs nanostructures on the As-stabilized surface], Journal of Physics: Conference Series,
2018, Vol. 1124, pp. 022018.
6. Tseng A. Poslednie razrabotki v oblasti mikroobrabotki s ispol'zovaniem tekhnologii
sfokusirovannykh ionnykh puchkov [Recent developments in micromilling using focused ion
beam technology], Journal of Micromechanics and Microengineering, 2004, Vol. 14, pp. 15.
7. Han J., Lee H., Min B., Lee S. Prognozirovanie topologii nanomaterialov s ispol'zovaniem
dvumernogo fokusirovannogo ionnogo frezerovaniya s intervalami oblucheniya puchkom
[Prediction of nanopattern topography using two-dimensional focused ion beam milling with
beam irradiation intervals], Microelectronic Engineering, 2010, Vol. 87, pp. 1-9.
8. Klimin V.S., Solodovnik M.S., Lisitsin S.A., Rezvan A.A., Balakirev S.V. Formirovanie
nanorazmernykh struktur na poverkhnosti arsenida galliya pri lokal'nom anodnom okislenii i
plazmokhimicheskom travlenii [Formation of nanoscale structures on the surface of gallium
arsenide by local anodic oxidation and plasma chemical etching], Journal of Physics: Conference
Series, 2018, Vol. 1124, pp. 041024.
9. Adachi S. Svoystva poluprovodnikov gruppy IV, III-V i II-VI [Properties of group-IV, III-V
and II-VI semiconductors]. John Wiley & Son, 2005, 408 p.
10. Cao G. Nanostruktury i nanomaterialy. Sintez, svoystva i primenenie [Nanostructures &
nanomaterials. Synthesis, properties & applications]. Imperial College Press, 2004, 448 p.
11. Aseev A.L. Nanotekhnologii v poluprovodnikovoy elektronike [Nanotechnology in semiconductor
electronics]. Novosibirsk: Izd-vo SO RAN, 2004, 368 p.
12. Jha N.K., Chen D. Proektirovanie nanoelektronnykh skhem design [Nanoelectronic circuit
design]. Springer, 2011, 290 p.
13. Piccin P. et al. Rost metodom molekulyarno-luchevoy epitaksii i elektricheskaya
kharakteristika nanoviskerov GaAs [Growth by molecular beam epitaxy and electrical characterization
of GaAs nanowires], Physica E, 2007, Vol. 37, pp. 134-137.
14. Chernenko N.E., Balakirev S.V., Eremenko M.M., Solodovnik M.S. Mezhfaznoe
vzaimodeystvie v sisteme Ga-As-ZnO v usloviyakh molekulyarno-luchevoy epitaksii [Interfacial
interaction in the Ga-As-ZnO system under molecular beam epitaxy], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2019, No, 2, pp. 184-192.
15. Balakirev S.V., Blinov Yu.F., Solodovnik M.S. Model' nachal'noy stadii gomoepitaksial'nogo
rosta GaAs metodom MLE s uchetom sootnosheniya potokov rostovykh komponent [The
model of the initial stage of GaAs homoepitaxial growth by the MBE method taking into account
the ratio of the fluxes of growth components], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 94-105.
16. Chu C-P., Arafin S., Nie T. Nanorazmernyy rost GaAs na uzorchatykh podlozhkakh Si (111)
metodom molekulyarno-luchevoy epitaksii [Nanoscale Growth of GaAs on Patterned Si (111)
Substrates by Molecular Beam Epitaxy], Crystal Growth & Design, 2014, Vol. 14, pp. 593-598.
17. Gusev E.Yu., Zhityaeva Yu.Yu., Ageev O.A. Vliyanie usloviy PECVD na mekhanicheskoe
napryazhenie plenok kremniya [Effect of PECVD conditions on mechanical stress of silicon
films], Materials Physics and Mechanics, 2018, Vol. 37, No. 1, pp. 67-72.
18. Gusev E.Yu., ZHityaeva Yu.Yu., Kolomiytsev A.S., Gamaleev V.A., Kots I.N., Bykov A.V.
Issledovanie rezhimov zhidkostnogo travleniya zhertvennogo sloya SiO2 dlya formirovaniya
mikromekhanicheskikh struktur na osnove si*/SiO2/Si [Study of liquid etching modes of a
sacrificial SiO2 layer for the formation of micromechanical structures based on Si*/SiO2/Si],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 2
(163), pp. 236-245.
19. Sze S. Fizika poluprovodnikovykh priborov [Physics of semiconductor devices]. Vol. 1. Moscow:
Mir, 1984, pp. 258-261.
20. Epifanov G.I. Fizika Osnovy mikroelektroniki [Physics Fundamentals of Microelectronics].
Moscow: Sovetskoe radio, 1971, pp. 145-156.
Published
2020-02-26
Section
SECTION I. ELECTRONICS AND NANOTECHNOLOGY