INFLUENCE OF CONCENTRATION OF SILVER NANOPARTICLES IN POLYVINYL BUTTERAL FILMS ON CHARACTERISTICS OF SILICON SOLAR ELEMENTS
Abstract
The most simple and effective way to modify the characteristics of solar cells is the use of functional coatings. This way allows increasing the efficiency of solar cells without modifying the design and changing the technology of their production. The most promising may be the use of multifunctional coatings, which at the same time would combine the properties of antireflection coatings and allow to expand the spectral sensitivity and increase the quantum yield of solar cells. Such functional coatings can be created on the basis of polymer films with metal nanoparticles. Silver metallic nanoparticles are promising for use in functional coatings for silicon solar cells, since they produce surface plasmons, which in turn can create fluctuations in the surface charge density at the interface with the dielectric polymer film. Thus, a functional coating, which is a polymer film with silver nanoparticles distributed in it, can combine the protective function, the antireflection effect of the polyvinyl butyral polymer film, and the plasmon effect of silver nanoparticles, which will ulti-mately improve the characteristics of the solar cell. In the present work, polyvinyl butyral films with silver nanoparticles were obtained on the surface of solar cells and the effect of this functional coat-ing on the characteristics of a silicon solar cell was studied. The purpose of the work is to study the effect of the functional coatings with silver nanoparticles on the spectral characteristics of silicon solar cells. The spectral dependences of the external quantum yield of a silicon solar cell at various concentrations of silver nanoparticles in a polyvinyl butyral film are presented. It was found that the highest values of the external quantum yield of a solar cell (22.3% higher than the value of the ex-ternal quantum yield of a solar cell without functional coating) in the spectral range 540-1040 nm were recorded at a silver nanoparticles concentration of 7 mmol/L.
References
2. Rumyantsev V.D., Davidyuk N.Yu., Chekalin A.V., Malevskiy D.A., Panchak A.N., Sadchikov N.A., Andreev V.M., Luque A. Evaluation of the PV Cell Operation Temperature in the Process of Fast Switching to Open-Circuit Mode, IEEE Journal of Photovoltaics, 2005, Vol 5, No. 6, pp. 1715-1721.
3. Schattiger F., Bauer D., Demsar J., Dekorsy T., Kleinbauer J., Sutter D.H., Puustinen J., Guina M. Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers, Appl. Phys. B, 2012, Vol. 106, No. 3, pp. 605-612.
4. Luque A., Panchak A., Ramiro I., Linares P.G., Mellor A., Antolin E., Vlasov A., Andreev V., Marti A. Quantum Dot Parameters Determination From Quantum-Efficiency Measurements, IEEE Journal of Photovoltaics, 2015, Vol 5, No. 4, pp. 1074-1078.
5. Mintairov M.A., Kalyuzhnyy N.A., Evstropov V.V., Lantratov V.M., Mintairov S.A., Shvarts M.Z., Andreev V.M., Luque A. The segmental approximation in multijunction solar cells, IEEE Journal of Photovoltaics, 2005, Vol 5, No. 4, pp. 1229-1234.
6. Levin R.V., Marichev A.E., Marukhina E.P., Shvarts M.Z., Pushnyi B.V., Khvostikov V.P., Mizerov M.N., Andreev V.M. Photovoltaic converters of concentrated sunlight, based on InGaAsP(1.0 eV)/InP heterostructures, Semiconductors, 2015, Vol. 49, No. 5, pp. 700-703.
7. Wang P.H., Theuring M., Vehse M., Steenhoff V., Agert C., Brolo A.G. Light trapping in a-Si:H thin film solar cells using silver nanostructures, AIP Advances, 2017, No. 7 (015019).
8. Wang P.H., Nowak R.E., Geißendorfer S., Vehse M., Reininghaus N., Sergeev O., von Maydell K., Brolo, Agert C. Cost-effective nanostructured thin-film solar cell with enhanced absorp-tion, Appl. Phys. Lett., 2014, Vol. 106 (183106).
9. Hsu C.-M., Battaglia C., Pahud C., Ruan Z., Haug F.-J., Fan S., Ballif C., Cui Y. High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector, Advanced Ener-gy Materials, 2012, No. 2, pp. 628-633.
10. Sai H., Saito, Hozuki N., Kondo M. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells, Appl. Phys. Lett., 2013, Vol. 102 (053509).
11. Davidenko N.A., Davidenko I.I., Kokozay V.N., Studzinsky S L., Petrusenko S.R., Plyuta N.I. Photovoltaic properties of film composites of polyvinyl butyral and a cu/ca heterometallic complex, Journal of Applied Spectroscopy, 2015, Vol. 82, No. 5, pp. 750-754.
12. Davidenko N.A., Kokozay V.N., Davidenko I.I., Buvailo H.I., Makhankova V.G., Studzinsky S.L. Photoconducting characteristics of films of polyvinylbutyral/hetero-polyoxometalate composite, Theoretical and Experimental Chemistry, 2015, Vol. 52, No. 1, pp. 10-15.
13. Huang Lee-May Hsu, Sam Hsien-Yi Lai, Ray-Chien Lin, Fu-Ming Peng, Cheng-Yu Yeh, Fang-Yao. Physical Properties of EVA and PVB Encapsulant Materials for Thin Film Photovoltaic Module Applications. Conference: 23rd EUPVSEC, At Valencia, Spain. September 2008.
14. Lunin L.S., Lunina M.L., Kravtsov A.A., Sysoev I.A., Blinov A.V., Pashchenko A.S. Vliyanie kontsentratsii nanochastits serebra v funktsional'nykh pokrytiyakh TiO2−Ag na kharakteristiki fotopreobrazovateley GaInP/GaAs/Ge [Influence of concentration of silver nanoparticles in TiO2−Ag functional coatings on characteristics of GaInP/GaAs/Ge photoconverters], Fizika i tekhnika poluprovodnikov [Physics and technology of semiconductors], 2018, Vol. 52, No. 8, pp. 860-864.
15. Nakamura J. Development of Heterojunction Back Contact Si Solar Cells, Extended Abstracts of the 2014 International Conference on Solid State Devices and Materials, Tsukuba, 2018, pp. 758-759.
16. Becker J. Light-scattering and absorption of nanoparticles (Chapter 2), Plasmons as Sensors. Berlin. Springer, 2012, pp. 5-38.
17. Boren K., Khafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami [Absorption and scattering of light by small particles]: transl. from engl. Moscow: Mir, 1986, 664 p.
18. Atwater H., Polman A. Plasmonics for improved photovoltaic devices, Nature Materials, 2010, Vol. 9, pp. 3-11.
19. Muhlschlegel P., Eisler H.J., Martin O.J.F., Hecht B., Pohl D. Resonant optical antennas, Science, 2005, Vol. 308, pp. 1607-1609.
20. Ditlbacher H., Krenn J.R., Schider G., Leitner A., Aussenegg F.R. Two-dimensional optics with surface plasmon polaritons, Applied Physics Letters, 2002, Vol. 81(10), pp. 1762-1764.
21. Kirkengen M., Bergli J., Galperin Y.M. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles, Journal of Applied Physics, 2007, Vol. 102, Issue 9 (093713).