ORGANIZATION OF RESOURCE ALLOCATION, COLLECTION AND PROCESSING OF DATA FOR OBJECTS PROTECTION SYSTEM
Abstract
The article considers an approach to the organization of resource allocation in the data collection system for the task of creating a complex of perimeter protection of objects of large territorial extent, taking into account the likely presence of various threats and the need to mon-itor the management of objects group based on changing goals. The principles of data descrip-tion system creation are considered. The data description system contains a database and mod-eling and control subsystems. The modeling subsystem of the perimeter security system allows to solve the problem of planning the joint action of objects of the protected area. The descrip-tion of subsystem of modeling of interaction of technical means and objects of the protected territory is resulted. The approach to modeling subsystem of interaction of technical means and objects of the protected area on the basis of new fuzzy hypergraphic model where actors act as vertices is shown. In the framework of this study, an actor is understood as some object or sub-ject, capable of entering into an information network interaction. In the proposed model, actors are dangerous production facilities or their partial representation, protection modules and po-tential violators. The article considers the results of the software implementation of the perime-ter security system database, designed to store and update information about the objects of the security system and threats from potential violators. The perimeter security database is based on the Microsoft Windows Azure cloud storage platform. The scheme of interaction between the database of the perimeter security system and the modeling subsystem is proposed. The ap-proaches implemented in the article allow us to organize the interaction of a modeling sub-system based on the proposed hypergraphic model and a database created using standard SQL database technologies, where in addition to the traditional parameters of objects, the geograph-ical position and General geometry of the object are added.
References
2. Myl'nikov D.Yu. Geoinformatsionnye platformy. Obzor GIS platform [Geoinformation plat-forms. Overview of GIS platforms]. Available at: https://www.politerm. com/articles/ comnet/obzor_gis/.
3. Osnovnye svedeniya o tipakh prostranstvennykh dannykh. Available at: https://msdn.microsoft.com/ ru-ru/library/ bb964711.aspx.
4. OpenGIS® Implementation Standard for Geographic information. Available at: http://www.opengeospatial.org/standards/ sfa.
5. Coordinate reference systems implementation. Available at: http://docs. geotools.org/latest/ javadocs/org/geotools/ referencing/crs/Abstract CRS.html.
6. Sergeev N.E, Muntyan E.R. Predstavlenie ob"ektov slozhnykh tekhnicheskikh sistem v modelyakh na osnove nechetkikh grafov [Object representation of complex technical systems in models based on fuzzy graphs], Tr. Kongressa po intellektual'nym sistemam i informatsionnym tekhnologiyam «IS&IT’19» [Proc. of Int. Conf. on Intelligent Systems and Information Technologies «IS&IT’19»]. Taganrog: Izd-vo Stupina S.A. 2019, T. 2, pp. 20-23.
7. Kolodenkova A.E., Muntyan E.R., Korobkin V.V. Modern approaches to modeling of risk situa-tions during creation complex technical systems, Advances in Intelligent Sys-tems and Compu-ting, 2018, Vol. 875, pp. 209-217. DOI: 10.1007/978-3-030-01821-4_22.
8. Latour B. Politics of nature. How to bring the sciences into democracy. Cambridge: Harvard University Press, 2004, 320 p.
9. Malov E.A. O kontseptsii «aktor-seti» Bruno Latura [On the concept of "actor-network" Bruno Latour], Idei i ideally [Ideas and ideals], 2014, Vol. 2, No. 1 (19), pp. 127-134.
10. Rassel Dzh., Kon R. Model' aktorov [The actor model]. VSD, 2012, 102 p.
11. Murav'ev A.A. Nekotorye podkhody k opredeleniyu effektivnosti setevoy struktury i realizatsiya rentoorientirovannogo povedeniya aktora v seti [Some approaches to determining the effectiveness of the network structure and the implementation of rent-oriented behavior of the actor in the network], Vestnik KGU [Vestnik KSU], 2011, No. 2, pp. 330-333.
12. Srinivasan S., Mycroft A. Kilim: Isolation-Typed Actors for Java, Europe Conf. on Object Oriented Program. ECOOP, 2008. Springer-Verlag Berlin Heidelberg. 2008, pp. 104-128.
13. Muntyan E.R. Osobennosti ispol'zovaniya grafov pri modelirovanii slozhnykh tekhnicheskikh sistem [Features of the use of graphs in the modeling of complex technical systems], Sistemnyy sintez i prikladnaya sinergetika: Sb. nauch. tr. IX Vseros. nauchn. konf. [Proc. of 9th All-Russ. Sci. Conf. on System Synthesis and Applied Synergetics]. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2019, pp. 228-233.
14. Khokhlov M.V. Algoritm opredeleniya lokal'noy topologicheskoy izbytochnosti teleizmereniy na gipergrafe izmereniy [An Algorithm to Evaluate the Topological Local Redundancy of Measurements Using Hypergraph Model], Energosistema: upravlenie, konkurentsiya, obrazovanie: Sb. dokladov III mezhdunarodnoy nauchno-prakticheskoy konferentsii [.Power System: Management, Competition, Education. Proc. of 3rd Int. Scientific and Technical Conf.]. Ekaterinburg: UGTU-UPI, 2008, Vol. 1, pp. 423-427.
15. Starostin N.V., Balashov V.V. Ispol'zovanie gipergrafovoy modeli dlya gibkoy trassirovki soedineniy spetsializirovannykh bol'shikh integral'nykh skhem [Use of hypergraphic model for flex-ible tracing of connections of specialized large integrated circuits], Matematicheskoe modelirovanie i optimal'noe upravlenie. Vestnik Nizhegorodskogo universiteta [Mathematical modeling and opti-mal control. Bulletin of Nizhny Novgorod University], 2007, No. 6, pp. 134-139.
16. Muntyan E.R. Realizatsiya nechetkoy modeli vzaimodeystviya ob"ektov slozhnykh tekhnicheskikh sistem na osnove grafov [Realization of fuzzy model of objects interaction inside a complex technical systems based on graphs], Programmnye produkty i sistemy [Software & Systems], 2019, Vol. 32, No. 3, pp. 411–418. DOI: 10.15827/0236-235X.127.411–418.
17. Berge C. Hypergraphs: combinatorics of finite sets. North-Holland, 1989, 255 p.
18. Zykov A.A. Gipergrafy [Hypergraphs], Uspekhi matematicheskikh nauk [Successes of mathe-matical Sciences], 1974, Vol. 29, No. 6, pp. 89-154.
19. Sergeev N.E., Muntyan E.R. Interpretatsiya sotsial'nykh otnosheniy v gipergrafovykh modelyakh [Interpretation of social relations in hypergraph models], Tr. Kongressa po intellektual'nym sistemam i informatsionnym tekhnologiyam «IS&IT’18». Nauchnoe izdanie v 3-kh t. T. 2 [Proc. of Int. Conf. on Intelligent Systems and Information Technologies «IS&IT’18». Scientific publi-cation in 3 vol. Vol. 2]. Taganrog: Izd-vo Stupina S.A., 2018, pp. 79-87.
20. Kolodenkova A.E. and Muntyan E.R. Researches of Interaction of Actors with Use Fuzzy Hypergraph and Cognitive Modeling, 2018 XIV Int. Scientific-Technical Conf. on Actual Prob-lems of Electronics Instrument Engineering (APEIE): IEEE, 2018, pp. 127-131. DOI: 10.1109/APEIE.2018.8545550.