EXPERIMENTAL MEASUREMENT OF RELATIVE INSTABILITY OF FREQUENCY OF OSCILLATORS BY DIGITAL MULTIPLIER-CONVERTING METHOD

  • J. Nsue Southern Federal University
  • V. P. Fedosov Southern Federal University
  • S.V. Kucheryavenko Southern Federal University
Keywords: Standard deviation, frequency instability, multiplication-conversion operations, random processes, harmonic oscillation, discretization

Abstract

The article is devoted to the problem of the discrepancy between the theoretical results of measuring the parameters of harmonic oscillation and software calculation. The simulation was performed using the LabVIEW software environment, using the digital multiplier-conversion method, the main stages of which are presented in the form of a developing chain: a) generation of harmonic oscillations and random processes b) interference filtering using bandpass filters tuned to the first harmonic c) parallel summation resulting processes, d) raising the results of summation to the sixth and seventh degree e) re-filtering a random process using band-pass filters Tuned to the sixth and seventh harmonic, e) multiplication applied to the selected higher harmonics, e) fil-tering for another combinational harmonic by a bandpass filter tuned to the first harmonic, f) the resulting signal is subjected to Hilbert transform. The Hilbert transform from an analytical signal gives a complex signal with a real and imaginary part, h) the resulting complex signal is converted into a polar or exponential form for subsequent phase extraction, and) obtaining frequency infor-mation by applying the derivative to the phase. Obtained, after applying the multiplication-conversion operations, the regularity of the frequency change is compared with the initial frequency and the parameters are determined: mathematical expectation and standard deviation. Based on the discrepancies obtained, a conclusion is drawn about frequency instability. As a re-sult of applying nonlinear transformations of oscillations of oscillators of identical instability and obtaining the same frequency oscillation using the same method, controlled frequency instability is formed. Applying this method many times to the oscillations of highly stable generators, it is pos-sible to form an oscillation with increased instability, and then measure it with conventional measuring instruments without resorting to high costs when performing this operation. Then cal-culate the initial instability using the above formulas.

References

1. Nsue Kh.M.B., Fedosov V.P., Tereshkov V.V. Otsenka nestabil'nosti chastoty s pomoshch'yu pokazateley vo vremennoy oblasti [Estimation of frequency instability using indicators in the time domain], Rostovskiy nauchnyy zhurnal: setevoy zhurnal [Rostov Scientific Journal: Net-work Journal], 2016, Vol. 4, Issue 6, pp. 5-15.
2. Nsue Kh.M.B., Fedosov V.P., Tereshkov V.V. Izmerenie nestabil'nosti chastoty vysoko-stabil'nykh generatorov s pomoshch'yu pokazateley vo vremennoy oblasti [The measurement of frequency instability of highly stable generators using indicators in the time domain], Rostovskiy nauchnyy zhurnal: setevoy zhurnal [Rostov Scientific Journal: Network Journal], 2016, Vol. 4, Issue 7, pp. 63-70.
3. Nsue Kh.M.B., Fedosov V.P. TSifrovoy algoritm izmereniya kratkovremennoy nestabil'nosti chastoty vysokostabil'nykh generatorov umnozhitel'no-preobrazovatel'nym metodom [A digi-tal algorithm for measuring the short-term frequency instability of highly stable generators by the multiplication-converting method], Tendentsii razvitiya nauki i obrazovaniya: Sb. nauch. trudov, po materialam XV mezhdunar. nauch. konf. 25 iyunya 2016 g. [Trends in the Devel-opment of Science and Education: Sat. scientific proceedings, according to the materials of the XV int. scientific conf. June 25, 2016]. Izd-vo NITS «L-Zhurnal», 2016. – Part 3, pp. 16-18.
4. Nsue Kh.M.B., Fedosov V.P., Kucheryavenko S.V. Izmerenie kratkovremennoy nestabil'nosti chastoty sverkhstabil'nykh kvazigarmonicheskikh signalov [Measurement of short-term fre-quency instability of superstable quasiharmonic signals], Inzhenernyy vestnik Dona [Engineer-ing Journal of the Don], 2018, No. 1.
5. Nsue Kh.M.B., Kucheryavenko S.V. Kratkovremennaya nestabil'nost' chastoty kvazigarmonicheskikh signalov [Short-term frequency instability of quasi-harmonic signals], Sb. trudov 18-oy Natsional'noy molodezhnoy nauchno-prakticheskoy konferentsii «Fundamental'nye issledovaniya s primeneniem komp'yuternykh tekhnologiy v nauke, proizvodstve, sotsial'nykh i ekonomicheskikh protsessakh», g. Novocherkassk, 2018 [Proceedings of the 18th National Youth Scientific and Practical Conference "Fundamental Research Using Computer Technologies in Sci-ence, Production, Social and Economic Processes", Novocherkassk, 2018].
6. Fedosov V.P., Muravitskiy N.S., Kucheryavenko S.V. Povyshenie effektivnosti radiosvyazi v releevskom kanale na osnove antennykh reshetok [Improving the efficiency of radio commu-nication in the relay channel based on antenna arrays], Radiotekhnika [Radiotechnics], 2008, No. 11, pp. 195-204.
7. Kucheryavenko S.V., Ryzhov V.P. Ispol'zovanie tekhnologii National Instruments dlya modelirovaniya sluchaynykh protsessov i ikh preobrazovaniy [Use of National Instruments technology for modeling random processes and their transformations], Mater. Mezhdunarodnoy nauchnoy konferentsii «Tekhnologii National Instruments v nauke, tekhnike i obrazovanii» [Materials of the International scientific conference "national Instruments Tech-nologies in science, technology and education"]. Taganrog: Izd-vo YuFU, 2006, pp. 15-17.
8. Fedosov V.P., Lomakina A.V., Legin A.A., Voronin V.V. Modeling of systems wireless data trans-mission based on antenna arrays in underwater acoustic channels, Proceedings of SPIE - The Inter-national Society for Optical Engineering Architectures, Algorithms, and Applications. Baltimore: The Society of Photo-Optical Instrumentation Engineers (SPIE), 2016, pp. 98720G.
9. Fedosov V.P., Tarasov S.P., Pivnev P.P., Voronin V.V., Kucheryavenko S.V., Legin A.A., Lomakina A.V., Frants V.A. Seti svyazi dlya podvodnykh avtonomnykh robotizirovannykh kompleksov: monografiya [Communication networks for underwater autonomous robotic sys-tems, monograph]. Rostov-on-Don - Taganrog, 2018.
10. Kucheryavenko S.V. Spektry zvukovykh signalov v bazise Khaara [Spectra of sound signals in the Haar basis], Izvestiya TRTU [Izvestiya TSURE], 1999, No. 2 (12), pp. 43.
11. Kucheryavenko S.V. Svoystva simmetrii signalov i ikh otobrazhenie v razlichnykh bazisakh [Symmetry properties of signals and their display in various bases], Izvestiya TRTU [Izvestiya TSURE], 1998, No. 3 (9), pp. 14.
12. Mengali U., D’Andrea A. Synchronization Techniques for Digital Receivers. New York: Ple-num Press, 1997, 529 p.
13. Decina М., deJulio U. International Activities on Network Synchronization for Digital Com-munication, IEEE International Communications Conference, 1979.
14. Abate J.E., Brandenburg L.H., Lawson J.C., Ross W.L. The Switched Digital Network Plan, Bell System Technical Journal, September 1977, pp. 1297-1320.
15. Pierce J.R. Synchronizing Digital Networks, Bell System Technical Journal, March 1969, pp. 615-636.
16. Collins A.A. Pedersen R.D. Telecommunications, A Time for Innovation, Merle Collins Foun-dation, Dallas, Texas 1973.
17. Byrne C.J., Karafin B.J., Robinson D.B. Systematic Jitter in a Chain of Digital Repeaters, Bell System Technical Journal, November 1963, pp. 2679- 2714.
18. Gardner F.M. Phaselock Techniques. – 2nd ed., John Wiley & Sons, New York, 1979.
19. Sunde E.D. Self-Timing Regenerative Repeaters, Bell System Technical Journal, July 1957, pp. 891-938.
20. Duttweiler D.L. The Jitter Performance of Phase-Locked Loops Extracting Timing from Base-band Data Waveforms, Bell System Technical Journal, January 1976, pp. 37-58.
21. Impact of Jitter on the Second Order Digital Multiplex at 6312 kbit/s, AT&T Submittal to CCITT study group on jitter, Green Book, Vol. 3, pp. 861-869.
22. Muratani T. Saitoh H. Synchronization in TDMA Satellite Communications, IEEE Interna-tional Conference on Communications, 1979, pp. 11.4.1-11.4.6.
Published
2020-01-23
Section
SECTION I. INFORMATION PROCESSING ALGORITHMS.