FUZZY MODEL FOR THE MAXIMUM DYNAMIC FLOW FINDING FOR SOLVING THE TASK OF EVACUATION FROM BULDINGS

  • E.M. Gerasimenko Southern Federal University
Keywords: tasks of evacuation from building, fuzzy transportation network, evacuation simulation

Abstract

This article is devoted to solving the important task of evacuation from building, particularly,
evacuating the maximum number of victims from dangerous areas to safe ones within a given time interval.
The constructed model of the evacuated building is represented by a transportation network with a
dynamic structure, since the capacities and parameters of the flow time can vary in time. In addition, thenodes of the transportation network have weights that limit the maximum number of people who can be
arranged in a given vertex-room. The fuzzy and uncertain nature of the network parameters leads to the
problem statement in fuzzy conditions, which allows simulating a real evacuation situation, in which the
arc capacities in different time intervals are not exactly determined, however can be estimated approximately,
in a certain interval, etc. This leads to the necessity of the specifying arcs in a fuzzy form. A feature
of the algorithm is the ability to take into account the weights of the vertices of the transportation
network; this is accomplished by replacing the vertex with the arc capacity with two auxiliary vertices,
the arc between which has capacity equal to the initial capacity of the vertex. The numerical example
illustrating the operation of the proposed algorithm is solved. The results obtained in the course of solving
the evacuation task using the proposed algorithm can be applied in practice to solve the building
evacuation tasks in uncertain conditions, where the exact number of evacuees is not known and the
maximum possible number of evacuees must be transferred to safe zones, taking into account the timevarying
capacities and limitations on the capacity of the rooms.

References

1. Matuschke J. Network flows and network design in theory and practice. Ph.D. Thesis,
Technical University, Berlin, 2014.
2. Bozhenyuk A.V., Gerasimenko E.M., Kacprzyk J., Rozenberg I. Flows in networks under fuzzy
conditions // Studies in Fuzziness and Soft Computing. – 2017. – Vol. 346.
3. Малодушев С.В., Воронов Р.В. Определение оптимальных путей эвакуации из здания //
Фундаментальные исследования. – 2015. – № 10-3. – C. 495-502.
4. Станкевич Т.С. Определение оптимального пути спасения людей из горящего здания //
Технологии техносферной безопасности. – 2013. – № 5. – C. 1-9.
5. Dhamala T.N. A survey on models and algorithms for discrete evacuation planning network
problems // Journal of Industrial and Management Optimization. – 2015. – No. 11. – P. 265-289.
6. Siebel F., Mauser W., Moutari S., Rascle M. Balanced vehicular traffic at a bottleneck // Mathematical
and Computer Modeling. – 2007. – Vol. 49. – P. 689-702.
7. Baumann N., Köhler E. Approximating Earliest Arrival Flows with Flow-Dependent Transit
Times. In: Fiala J., Koubek V., Kratochvíl J. (eds.). Mathematical Foundations of Computer
Science 2004. MFCS 2004. Lecture Notes in Computer Science. Vol 3153. – Springer, Berlin,
Heidelberg, 2004.
8. Wang J.W., Wang H. F., Zhang W. J. et al. Evacuation planning based on the contra flow technique
with consideration of evacuation priorities and traffic setup time // In IEEE Trans. Intell.
Trans. Syst. – 2013. – Vol. 14. – P. 480-485.
9. Pyakurel U., Nath H.N., Dhamala T.N. Efficient contraflow algorithms for quickest evacuation
planning // Science China Mathematics. – Vol. 61, No. 11. – P. 2079-2100.
10. Lin M, Jaillet P. On the quickest flow problem in dynamic networks: A parametric min-cost
flow approach // Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia:
Society for Industrial and Applied Mathematics. – 2015. – P. 1343-1356.
11. Hamacher H.W., Heller S., Rupp B. Flow location (FlowLoc) problems: Dynamic network
flows and location models for evacuation planning // Annals of Operations Research. – 2013.
– Vol. 207. – P. 161-180.
12. Miller-Hooks E., Patterson S.S. On solving quickest time problems in time-dependent, dynamic
networks // Journal of Mathematical Modelling and Algorithms. – 2004. – Vol. 3, No. 1.
– P. 39-71.
13. García-Ojeda J., Bertok B. Building-evacuation-route planning via time-expanded processnetwork
synthesis // Fire Safety Journal. – 2013. – Vol. 61. – P. 338-347.
14. Kureichik V., Gerasimenko E. Approach to the Minimum Cost Flow Determining in Fuzzy Terms
Considering Vitality Degree. In Silhavy R., Senkerik R., Kominkova Oplatkova Z., Prokopova Z.,
Silhavy P. (eds) // Artificial Intelligence Trends in Intelligent Systems. CSOC 2017. Advances in Intelligent
Systems and Computing. Vol. 573. – Springer, Cham, 2017. – P. 200-209.
15. Kureichik V., Gerasimenko E. Multi-Commodity Maximum Flow Determining in a Fuzzy
Graph with Vitality Degrees // Proceedings of 11th International Conference on Application of
Information and Communication Technologies, AICT 2017, Moscow, Russia. – P. 347-351.
16. Герасименко Е.М. Нахождение потока минимальной стоимости в транспортной сети
методом ранжирования математического ожидания нечетких функций стоимостей // Из-
вестия ЮФУ. Технические науки. – 2012. – № 4 (129). – C. 247-251.
17. Герасименко Е.М. Нахождение потоков в транспортных сетях в условиях нечеткости и
частичной неопределенности: автореф. дис. … канд. техн. наук. – Таганрог, 2014. – 22 с.
18. Кирик Е.С., Дектерев А.А., Литвинцев К.Ю., Харламов Е.Б., Малышев А.В. Математиче-
ское моделирование эвакуации при пожаре // Математическое моделирование. – 2014.
– Т. 26, № 1. – С. 3-16.
19. Самошин Д.А. Состав людских потоков и параметры их движения при эвакуации: моно-
графия. – М.: Академия ГПС МЧС России, 2016. – 210 с.
20. Yusoff M., Ariffin J., Mohamed A. Optimization Approaches for Macroscopic Emergency
Evacuation Planning : A Survey // International Symposium on Information Technology.
– 2008. – Vol. 3. – P. 1-7.
21. Yueming, C., Deyun, X. Emergency evacuation model and algorithms // Journal of Transportation
Systems Engineering & Information Technology. – 2008. – Vol. 8 (6). – P. 96-100.
Published
2019-11-12
Section
SECTION I. ARTIFICIAL INTELLIGENCE AND FUZZY SYSTEMS