EVALUATION OF THE METAMATERIAL APPLICATION EFFICIENCY IN THE DEVELOPMENT OF MICROSTRIP ANTENNAS BASED ON LTCC TECHNOLOGY

  • H. E. Abdo Mahyoub Southern Federal University
  • N. N. Kisel Southern Federal University
Keywords: LTCC technology, microstrip antenna, metamaterial, frequency range, SRR resonator, SR spiral resonator

Abstract

The paper presents the results of the study and modeling of the characteristics of the metamaterial consisting of a square open-loop ring resonators (SRR – split ring resonator), the SRR with a single ring and SR resonators based on the obtained results. Numerical results have shown that higher miniaturization is achieved using a spiral resonator SR, compared to the cases of SRR with double rings and SRR with one ring. A study in the range of 9.15 GHz to 5.25 GHz of the influence on the characteristics of the metamaterial of SR spiral resonators from the number of turns (from 1 to 5) at fixed other sizes of the resonator. It is shown that the increase in the number of turns leads to a shift of the operating frequency band towards lower frequency values, but the operating band is reduced. The paper presents the calculation through the coefficients of trans-mission and reflection of the effective values of the dielectric εeff and magnetic permeability μeff layer of metamaterial based on the spiral resonator SR. A microstrip antenna with a substrate of SR-metamaterial is considered. It is shown that this modification of the antenna and the use of LTCC technology can reduce the geometric dimensions of the emitters, extend the operating fre-quency band and radiation efficiency. Numerical studies were carried out using specialized soft-ware for electrodynamic design FEKO and HFSS.

References

1. Eleftheriades G.V., Balmain K.G. Negative-Refraction Metamaterials – Fundamental Princi-ples and Applications, John Wiley & Sons. Inc, 2005.
2. Musayev M.M., Kisel N.N. Investigation of the electrical and magnetic properties of combined metamaterials // IEEE Conferences Progress In Electromagnetics Research Symposium – Spring (PIERS). – 2017. – P. 2963-2966.
3. Hamed E.A. Mahyoub; Kisel N.N. Design, optimization and simulation of a compact multi-layered microstrip antennas based on LTCC-technology in FEKO // Radiation and Scattering of Electromagnetic Waves (RSEMW). – 2017. – P. 175-176.
4. Musayev M.M., Kisel N.N. Lens research on the basis of the combined metamaterial // Radia-tion and Scattering of Electromagnetic Waves (RSEMW). – 2017. – P.172-174.
5. Kisel N.N., Cheremisov V.A., Derachitc D.S. The modeling of characteristics of the patch antenna with non-uniform substrate metamaterial // IEEE East-West Design & Test Symposi-um (EWDTS). – 2016. – P. 1-3.
6. Baena J.D., Marqu´es R., and Medina F. Artificial magnetic metamaterial design using spiral resonators // Physical Review B. – 2004. – Vol. 69. – P. 014402.
7. Hao Y., and Mittra R. FDTD Modeling of Metamaterials. Theory and Applications: Artech House. – 2009.
8. Ziolkowski R.W. Design, Fabrication, and Testing of Double Negative Meta-materials // IEEE Transactions on Antennas and Propagation. – 2003. – Vol. 51, No. 7. – P. 1516-1529.
9. Derov J.S., Turchinetz B.W., Crisman E.E., Drehman A.J., Best S.R., Wing R.M. Free space measurements of negative refraction with varying angles of incidence // IEEE Microwave Wireless Components Letters. – 2005. – Vol. 15, No. 9. – P. 567-569.
10. Bilotti F., Toscano A., Vegni L. Design of Spiral and Multiple Split-Ring Re- sonators for the Realization of Miniaturized Metamaterial Samples // IEEE Trans-actions on Antennas and Propagation. ‒ Vol. 55, No. 5. ‒ P. 2258-2267.
11. Xu W., Li L.-W., Yao H.-Y., Yeo T.S. Extraction of constitutive relation tensor parameters of SRRs structures using transmission line theory // Journal of Electromagnetic Waves and Ap-plications. ‒ 2006. – Vol. 20, No. 1. ‒ P. 13-25.
12. Lerat J.M., Mall´ejac N., Acher O. Determination of the effective parameters of a metamaterial by field summation method // Journal of Applied Physics. ‒ 2006. – Vol. 100.
13. Mittra R. To Use or Not to Use the Effective Medium Approach for Designing Performance-Enhanced Small Antennas // That is the Question”, International Workshop on Antenna Tech-nology: Small Antennas and Novel Metamaterials, IWAT 2008, Chiba (Japan), Mar. 4-6. 2008. ‒ Р. 55-58.
14. Musayev M.M., Kisel N.N. lens research on the basis of the combined metamaterial // Confer-ence Proceedings - 2017 Radiation and Scattering of Electromagnetic Waves, RSEMW. ‒ 2017. ‒ 2017. ‒ P. 172-174.
15. Mahyoub H.E.A., Kisel N.N. Design, optimization and simulation of a compact multi-layered microstrip antennas based on LTCC-technology in FEKO // Conference Proceedings - 2017 Radiation and Scattering of Electromagnetic Waves, RSEMW 2017. ‒ 2017. ‒ P. 175-176.
16. Мусаев М.М.О., Кисель Н.Н. Исследование характеристик антенны на основе метамате-риала // Известия ЮФУ. Технические науки. ‒ 2017. ‒ № 6 (191). ‒ С. 249-258.
17. Кисель Н.Н. Основы компьютерного проектирования РЭС САПР СВЧ: учеб. пособие. ‒ Таганрог: ЮФУ, 2016.
18. Махьюб Х.Е., Кисель Н.Н. Проектирование в FEKO микрополосковых антенн на основе низкотемпературной керамики // Проблемы современной системотехники: Cб. научных статей. ‒ Таганрог: ЮФУ, 2016. ‒ С. 52-59.
19. Kisel N.N., Cheremisov V.A., Derachitc D.S. the modeling of characteristics of the patch an-tenna with non-uniform substrate metamaterial // Proceedings of 2016 IEEE East-West Design and Test Symposium, EWDTS 2016. ‒ 2016. ‒ P. 7807718.2.
20. Кисель Н.Н., Черемисов В.А., Дерачиц Д.С. Исследование характеристик микрополоско-вой антенны с неоднородной подложкой на основе метаматериала // 26-я Международ-ная Крымская конференция "СВЧ-техника и телекоммуникационные технологии" (КрыМиКо 2016): Матер. конференции: в 13 т. ‒ 2016. ‒ С. 983-989.
21. Челобитчиков М.О., Кисель Н.Н. Эффективность микрополосковой антенны на основе подложки с неоднородным заполнением // Практика и перспективы развития партнерст-ва в сфере высшей школы: Матер. Пятнадцатой Международной научно-технической конференции: в 3-х кн. Сер. "Известия ЮФУ-ДонНТУ". ‒ 2014. ‒ С. 170-172.
22. Кисель Н.Н. Моделирование прикладных задач электродинамики и антенн на супервы-числительной системе в пакете FEKO. ‒ Таганрог, 2013.
23. Мусаев М.М.О., Кисель Н.Н. Численное и экспериментальное исследование метамате-риалов на основе спиральных элементов // Известия ЮФУ. Технические науки. ‒ 2012. ‒ № 11 (136). ‒ С. 81-86.
24. Кисель Н.Н. Электродинамическое моделирование антенн и устройств СВЧ в пакете FEKO: учеб. пособие. ‒ Таганрог: ЮФУ, 2010.
Published
2019-09-24
Section
SECTION III. NANOTECHNOLOGY AND MATERIALS SCIENCE