Fabrication of vacuum field-emission cathodes using local ion-induced deposition method with focused ion beam
Abstract
This paper presents the results of a study of the influence of parameters of a focused ion beam on technological modes of local ion beam milling and ion-induced deposition of materials from the gas phase to form elements of a vacuum field-emission nanoelectronics. A design of a field-emission cell was developed, consisting of a cathode-anode system, the shape of which provides, on the one hand, high reliability and efficiency, and on the other hand, it allows the use of ion-beam milling and ion-induced deposition technologies to form sealed cells in a vacuum technological cycle. The use of elements of vacuum electronics is promising from the point of view of achieving high radiation resistance and high operation frequencies. The creation of nanoscale cathode and anode structures, as well as the provision of ultra-short interelectrode distance allows to achieve a significant reduction in the power consumption of devices and to increase the density of the layout of elements. Using the methods of ion-induced carbon and tungsten deposition and local milling with a focused gallium ion beam, a mock-up vacuum emission cell based on a silicon/gold/silicon oxide structure was made. It is shown that using the method of ion-beam milling and ion-induced deposition of a gallium-focused ion beam makes it possible to form elements of a vacuum field-emission nanoelectronics with high accuracy and resolution and to avoid the drawbacks of traditional microelectronic processes, such as the need for masks, resists and liquid chemistry. The obtained results make it possible to create a basis for the development of radiation-resistant high-speed elements of ultra-large integrated circuits with reduced power consumption and can be used in the development of promising technological processes for the formation of the element base of nanoelectronics and nanomechanics using local beam nanostructuring methods.
References
2. В.В. Лучинин. Нанотехнологии: физика, процессы, диагностика, приборы. - М.: Физматлит, 2006. - 522 с.
3. Ageev O.A., Kolomiytsev A.S., Konoplev B.G. Formation of nanosize structures on a silicon substrate by method of focused ion beams // Semiconductors. 2011. Vol. 45. N 13. P. 1709-1712.
4. Агеев О.А., Коломийцев А.С., Коноплев Б.Г. Исследование параметров взаимодействия фокусированных ионных пучков с подложкой // Известия высших учебных заведений. Электроника. 2011. № 3 (89). С. 20-25.
5. Агеев О.А., Алексеев А.М., Внукова А.В., Коломийцев А.С., Громов А.Л., Коноплев Б.Г., Лисицын С.А. Моделирование рельефа поверхности подложки при наноразмерном профилировании методом фокусированных ионных пучков // Российские нанотехнологии. 2014. №1-2 (январь-февраль). Т. 9. С. 44-49.
6. Sabouri A., Anthony C.J., Bowen J., Vishnyakov V., Prewett P.D. The effects of dwell time on focused ion beam machining of silicon // Microelectronic Engineering. 2014. 121. P. 24–26.
7. P. Roediger, H. Wanzenboeck, S. Waid, G. Hochleitner, E. Bertagnolli Focused-ion-beam-inflicted surface amorphization and gallium implantation—new insights and removal by focused-electron-beam-induced etching // Nanotechnology. 2011. 22. 235302.
8. De Felicis D., Mughal M., Bemporad E. A method to improve the quality of 2.5 dimensional micro-and nanostructures produced by focused ion beam machining // Micron. 2017. 101. P. 8–15.
9. Агеев О.А., Коломийцев А.С., Громов А.Л., Ильин О.И. Исследование режимов субмикронного профилирования поверхности подложек кремния методом фокусированных ионных пучков// Известия Южного федерального университета. Технические науки, Т.117, №84, 2011 – С. 171-180.
10. I V Panchenko, A S Kolomiytsev, N A Shandyba, S A Lisitsyn. Fabrication of probes for scanning near-field optical microscopy using focused ion beam / IOP Conference Series: Materials Science and Engineering // Vol. 443 (2018) 012015.
11. Ageev O.A., Kolomiytsev A.S., Bykov A.V., Smirnov V.A., I.N. Kots Fabrication of advanced probes for atomic force microscopy using focused ion beam // Microelectronics Reliability, 55, 2015 – P. 2131–2134.
12. Агеев О.А., Ильин О.И., Коломийцев А.С., Коноплев Б.Г., Смирнов В.А. Модификация зондовых датчиков-кантилеверов для атомно-силовой микроскопии методом фокусированных ионных пучков // Нано- и микросистемная техника, № 4, 2011 – С. 4-8.
13. А.Л. Громов, А.С. Коломийцев, А.В. Котосонова, И.В. Панченко, Н.А. Шандыба // Известия ЮФУ. Технические науки. Южный федеральный университет. № 7 (201). (2018). С. 6-16.
14. I.V. Panchenko, N.A. Shandyba, A.S. Kolomiytsev, A.L. Gromov, O.A. Ageev. Study the influence of focused ion-beam milling parameters on the surface roughness // VI International Scientific Conference STRANN, p. 133-135.
15. N Shandyba, I Panchenko. The formation of probes for specialized modes of scanning probe microscopy by the method of focused ion beams // «Saint Petersburg OPEN 2018». P. 606-607.
16. Ivan Panchenko, Nikita Shandyba, Alexey Kolomiytsev, Alexandr Gromov, and Oleg Ageev. Investigation of The Local Profiling of The Solid Surfaces Using Focused Ion Beam / AIP Conference Proceedings // Vol. 2064, 030011 (2019).
17. И.В.Панченко, Н.А.Шандыба. Исследование процессов формирования элементов автоэмиссионной наноэлектроники методом фокусированных ионных пучков // Моделирование. Фундаментальные исследования, теория, методы и средства, 2018. С. 31-33.
18. Н.А.Шандыба, И.В.Панченко. Исследование структуры интегральных микросхем методом растровой электронной микроскопии // Моделирование. Фундаментальные исследования, теория, методы и средства, 2018. C. 274-277.
19. I V Panchenko, N A Shandyba, A S Kolomiytsev, Fabrication of nanosized vacuum field emission cells using focused ion beam // «Saint Petersburg OPEN 2019». P. 571-572.
20. N.A. Shandyba, I.V. Panchenko; A.S. Kolomiytsev. Formation of Elements of Field-emission Nanoelectronics by the Method of Focused Ion Beams // Physics and mechanics of new materials and their applications (PHENMA), 2018. P. 313-314.