A RECTENNA MODEL BASED ON MOSFETS FOR MICROWAVE ENERGY HARVESTING AT ULTRA-LOW POWER LEVELS

Cite as: B.G. Konoplev. A rectenna model based on mosfets for microwave energy harvesting at ultra-low power levels // Izvestiya SFedU. Engineering Sciences – 2024. – N. 6. - P. 248-256. doi: 10.18522/2311-3103-2024-6-248-256

  • B.G. Konoplev Southern Federal University
Keywords: Harvesting microwave energy from the environment, rectenna, nanometer MOSFET, subthreshold mode, rectenna model

Abstract

For wireless and battery-free power supply of autonomous devices with low power consumption harvesting
of radio frequency energy from the environment is increasingly used: energy from cellular stations,
radio stations, microwave ovens, Wi-Fi, Bluetooth, etc. To convert the collected energy into a DC voltage,
devices consisting of an antenna, a rectifier and an impedance matching circuit of the antenna and the rectifier,
called rectennas, are used. The power density of the electromagnetic field can be very small: from hundreds
of microwatts to tens of picowatts per cm2. Therefore, the task of developing rectennas capable of operating
at ultra-low power levels is urgent. The parameters of components of the rectenna (antenna, impedance
matching circuit, rectifier) are strongly interconnected, therefore, to obtain optimal characteristics, it is
necessary to design the rectenna considering the mutual influence of all components and use appropriate
models. The paper analyzes the features of the construction and development of a rectenna model based on
MOSFETs for operation at ultra-low power levels. Expressions for estimating the output voltage of the
recntenna are obtained, considering the basic parameters of the antenna, the rectifier/voltage multiplier and
the impedance matching circuit. Calculations based on the obtained expressions and modeling are performed
for a typical 90 nm CMOS technology. The possibility of constructing rectennas based on MOSFETs at ultralow
power levels up to -50 dBm is shown. Recommendations are given on the choice of technological and
design parameters of rectennas for harvesting microwave energy.

References

1. Shinohara N. Wireless Power Transfer via Radiowaves. – London: ISTE Ltd., 2014. – 238 p.
2. Tran L.-G., Cha H.-K., Park W.-T. RF power harvesting: a review on designing methodologies and
applications // Micro and Nano Systems Letters. – 2017. – Vol. 5, No. 14. – P. 1-16.
3. Luo Y., Pu L., Wang G., Zhao Y. RF Energy Harvesting Wireless Communications: RF Environment,
Device Hardware and Practical Issues // Sensors. – 2019. – Vol. 19. – Article 3010. - 28 p.
4. Shinohara N. History and Innovation of Wireless Power Transfer via Microwaves // IEEE Journal on
Microwaves. – 2021. - Vol. 1, No. 1. – P. 218-228.
5. Ibrahim H.H., Singh M.J., Al-Bawri S.S., Ibrahim S.K., Islam M.T., Alzamil A., Islam M.S. Radio Frequency
Energy Harvesting Technologies: A Comprehensive Review on Designing, Methodologies,
and Potential Applications // Sensors. – 2022. Vol. 22, 4144. – 30 p.
6. Binod Kumar Kanaujia, Neeta Singh, Sachin Kumar. Rectenna: Wireless Energy Harvesting System.
– Singapore: Springer, 2021. – 180 p.
7. Gao S.-P., Ou J.-H., Zhang X., Guo Y. Scavenging Microwave Wireless Power: A Unified Model,
Rectenna Design Automation, and Cutting-Edge Techniques // Engineering. – 2023. – Vol. 30, No. 11.
– P. 32-48.
8. Rashid A.H., Ahmad B.H., Abd Aziz M.Z., Nornikman H. Rectenna for Radio Frequency Energy Harvesting:
A Review // Elektrika. – 2024. – Vol. 23, No. 1. – P. 12-17.
9. Sadek D.H., Shawkey H.A., Zekry A.A. Compact and High-Efficiency Rectenna for Wireless Power-
Harvesting Applications // Hindawi International Journal of Antennas and Propagation. – 2021. – Vol. 21.
– 1109850. – 8 p.
10. Ali W., Subbyal H., Sun L., Shamoon S. Wireless Energy Harvesting Using Rectenna Integrated with
Voltage Multiplier Circuit at 2.4 GHz Operating Frequency // Journal of Power and Energy Engineering.
– 2022. – No. 10. – P. 22-34.
11. Pramono S., Shidiq D.D., Ibrahim M.H., Adriyanto F., Hikmaturokhman A. RF energy harvesting
using a compact rectenna with an antenna array at 2.45 GHz for IoT applications // Journal of Electrical
Engineering. – 2021. – Vol. 72, No. 3. – P. 159-167.
12. Pinuela M., Mitcheson P.D., Lucyszyn S. Ambient RF Energy Harvesting in Urban and Semi-Urban
Environments, IEEE Transactions on Microwave Theory and Techniques, 2013, Vol. 61, No. 7, pp.
2715-2726.
13. Wagih M., Beeby S. Thin Flexible RF Energy Harvesting Rectenna Surface with a Large Effective
Aperture for Sub-μW/cm2 Powering of Wireless Sensor Nodes, IEEE Transactions on Microwave
Theory and Techniques, 2022, Vol. 70, No. 9, pp. 4328-4338.
14. Chen Z., Song C., Zhang J., Zheng X., Volskiy V., Chu P., Vandenbosch G.A. Wearable Rectenna with
Integrated Miniaturized Feeding Slot and Rectifier Structure // IEEE Transactions on Antennas and
Propagation, 2023, Vol. 71, No. 5. - pp. 3868-3881.
15. Konoplev B.G. Analiz vypryamitelnykh svoystv nanometrovykh MOP-tranzistorov v diodnom
vklyuchenii pri sverkhnizkikh napryazheniyakh [Analysis of rectifier properties of nanometer
MOSFETS in diode connection at ultra-low voltages], Izvestiya YuFu. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2024, No. 2 (238), pp. 175-183.
16. Sinyukin A.S., Konoplev B.G. Integrated CMOS Microwave Power Converter for Passive Wireless
Devices, Russian Microelectronics, 2021, Vol. 50, No. 3, pp. 189-196.
17. Johnson R. C. Antenna Engineering Handbook. New York: McGraw-Hill, 1993, 988 p.
18. Hameed Z., Moez K. Design of impedance matching circuits for RF energy harvesting systems, Microelectronics
Journal, 2017, Vol. 62, pp. 49-56.
19. Shameli A., Safarian A., Rofougaran A., Rofougaran M., De Flaviis F. Power Harvester Design for
Passive UHF RFID Tag Using a Voltage Boosting Technique, IEEE Transactions on Microwave Theory
and Techniques, 2007, Vol. 55, No. 6, pp. 1089-1097.
20. Le T., Mayaram K., Fiez T. Efficient Far-Field Radio Frequency Energy Harvesting for Passively
Powered Sensor Networks, IEEE Journal of Solid-State Circuits, 2008, Vol. 43, No. 5, pp. 1287-1302.
21. Oh S., Wentzloff D.D. A -32dBm Sensitivity RF Power Harvester in 130nm CMOS, IEEE Radio Frequency
Integrated Circuits Symposium, June 2012, Canada, Montréal, pp. 483-486.
22. Aksoyak I.K., Chletsou A., Papapolymerou J., Ulusoy A.C. A High Sensitivity RF Energy Harvester
for Diverse Environments, 2020 50th European Microwave Conference, January 2021, Netherlands,
Utrecht, pp. 444-447.
23. Lee T.H. The design of CMOS radio-frequency integrated circuits. New York: Cambridge University
Press, 2012, 797 p.
24. Razavi B. RF microelectronics. New York: Prentice Hall, 2012, 916 p.
25. Barnett R.E., Liu J., Lazar S. A RF to DC Voltage Conversion Model for Multi-Stage Rectifiers in
UHF RFID Transponders, IEEE Journal of Solid-State Circuits, 2009, Vol. 44, No. 2, pp. 354-370.
26. Hu C., Niknejad A.M., Chauhan S.Y. BSIM4v4.8.2 MOSFET Model – User’s Manual. USA, CA,
Berkeley: University of California, 2020, 176 p.
27. Sicard E., Bendhia S.D. Basics of CMOS Cell Design. New York: McGraw-Hill, 2007, 429 p.
Published
2025-01-19
Section
SECTION IV. NANOTECHNOLOGY, ELECTRONICS AND RADIO ENGINEERING