MODELING OF SOCIAL INTERACTIONS BASED ON GRAPH APPROACHES
Cite as: E.R. Zyablova. Modeling of social interactions based on graph approaches // Izvestiya SFedU. Engineering Sciences – 2024. – N. 6. - P. 131-142. doi: 10.18522/2311-3103-2024-6-131-142
Abstract
The article proposes an approach to modeling social interactions in organizational systems, which
consists of several stages: obtaining data about system users, for example, using network parsing; forming
a GH-model of the system based on fuzzy graphs with different types of vertices and multiple different
types of edges; calculating graph characteristics taking into account a certain type of edges; using values
of graph characteristics to analyze the system taking into account the inherent semantic load. The expediency
of using the GH graph for the study of social relations in organizational systems is substantiated,
since it has a number of advantages. The GH-graph allows you to set all the necessary multi-type relationships
and at the same time reduce the time of system analysis by 1.9 times by using multiple edges in the
form of a vector, allowing you to combine several different types of edges. Modification of the model consists
in using different types of vertices. The type of vertices in the graph is determined by calculating their
characteristics. The paper shows the process of forming a graph model of a subsystem and calculating its
characteristics. The results of calculating the degrees of vertices and their centrality by degrees are
shown. To calculate the metric characteristics of the graph model, a modified algorithm for finding shortest
paths in the GH-graph was used, which was previously developed. A special feature of this algorithm
is the ability to use filters based on the type of vertices and edges. Numerical indices of the radius and
diameter of the graph are obtained, groups of central and peripheral vertices are determined, the centrality
of vertices in proximity is calculated, taking into account the selected types of edges for the study of
different types of relations in the system. The analysis of the subsystem is carried out using the example of
solving two practical problems. Groups of employees of the enterprise were identified among the network
users, their possible statuses and communicative activities were determined. The user status refers to belonging
to groups of managers of different levels, a group of ordinary employees of the enterprise. A solution
to the problem of identifying users (groups of users) most suitable for the dissemination (or, conversely,
non-proliferation) of information on the network is proposed.
References
social interactions: a basic model], Komp'yuternye issledovaniya i modelirovanie [Computer research
and modeling], 2023, Vol. 15, No 6, pp. 1673-1693.
2. Andrianova T.V. Ehkspertnoe soobshchestvo v modelirovanii social'nogo vzaimodeystviya:
vozmozhnosti i bar'ery [Expert community in modeling social interaction: opportunities and barriers],
Sb. nauchnykh trudov: Ehkspertnye instituty v XXI veke: printsipy, tekhnologii, kul'tura [Collection of
scientific papers: Expert institutions in the XXI century: principles, technologies, culture], Irkutsk.
Publishing house: Irkutsk State University, 2022, pp. 30-33.
3. Korovin D.I. O razvitii ekspertnogo metoda analiza modeley prognozirovaniya social'noekonomicheskikh
processov [On the development of an expert method for analyzing models of forecasting
socio-economic processes], Sovremennaya matematika i kontsepcii innovatsionnogo
matematicheskogo obrazovaniya [Modern mathematics and concepts of innovative mathematical education,
2022, pp. 138-146.
4. Kokodey T.A., Gorbacheva A.V., Postnaya E.A. Formirovanie individual'noy kar'ernoy traektorii
vypusknika VUZa [Formation of an individual career trajectory of a university graduate], Vestnik
Severo-Kavkazskogo federal'nogo universiteta [Bulletin of the North Caucasus Federal University],
2023, No 2 (95), pp. 233-239.
5. Pozdeeva E.G. Mul'tiagentnyy podkhod i ego preimushchestva v issledovanii sotsial'nykh protsessov
[Multi-agent approach and its advantages in the study of social processes], Sistemnyy analiz v
proektirovanii i upravlenii [System analysis in design and management], 2020, pp. 229-235.
6. Borisov V.V. Nechetkie kognitivnye modeli kak osnova dlya issledovaniya slozhnykh sistem i
protsessov [Fuzzy cognitive models as a basis for the study of complex systems and processes],
Rechevye tekhnologii [Speech technologies], 2020, No. 1-2, pp. 48-62.
7. Kolodenkova A.E. and Muntyan E.R. Researches of interaction of actors with use fuzzy hypergraph
and cognitive modeling, Papers in English 14th International scientific-techical conference on actual
problems of electronics instrument engineering: IEEE, 2018, vol. 8, pp. 127-131.
8. Gorelova G.V. Cognitive modeling of complex systems: state and prospects, Lecture Notes in Networks
and Systems, 2022, Vol. 442 LNNS, pp. 212-224.
9. Boccalettia S., Bianconic G., Criadod R., del Geniof C.I., Gómez-Gardeñesi J., Romanced M.,
Sendiña-Nadalj I., Wangk Z., Zaninm M. The structure and dynamics of multilayer networks. Preprint
submitted to Physics Reports, 2014, 157 p.
10. Contractor N.S., Monge P.R., Leonardi P.M. Multidimensional networks and the dynamics of
sociomateriality: bringing technology inside the network, International Journal of Communication,
2011, No 5, pp. 682-720.
11. Muntyan E.R. Aspekty ispol'zovaniya nechetkikh GH-modeley dlya predstavleniya sotsial'nykh
otnosheniy [Aspects of using fuzzy GH-models for representing social relations], Vestnik Tverskogo
gosudarstvennogo tekhnicheskogo universiteta. Seriya: tekhnicheskie nauki [Vestnik of Tver State
Technical University. Series «Technical Science»], 2020, No 3 (7), pp. 113-121.
12. Sergeev N.E., Tselykh Yu.A. GH-modeli sotsial'nykh setey [GH-models of social networks], Izvestiya
YuFU. Tekhnicheskie nauki [News of the Southern Federal University. Technical sciences], 2009,
No 1 (90), pp. 90-95.
13. Eremeev A.P., Muntyan E.R. Razrabotka ontologii na osnove grafov s mnozhestvennymi i
raznotipnymi svyazyami [Development of an ontology based on graphs with multiple and different
types of edges], Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision making],
2021, No 3, pp. 3.18.
14. Zyablova E.R. Ispol'zovanie grafovykh podkhodov dlya resheniya zadachi prognozirovaniya v oblasti
formirovaniya kar'ernykh traektoriy [The use of graph approaches to solve the problem of forecasting
in the field of career trajectories formation], Tr. XII Mezhdunarodnoy nauchno-prakticheskoy
konferentsii «Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte» [Proceedings
of the XII International Scientific and Practical Conference "Integrated models and soft computing in
artificial intelligence"], in 2 vol. Vol. 1. Smolensk: Universum, 2024, pp. 150-158.
15. Yarushkina N.G. Osnovy teorii nechetkikh i gibridnykh sistem [Fundamentals of the theory of fuzzy
and hybrid systems], Moskva: Finansy i statistika, 2004, 320 p.
16. Muntyan E.R., Kolodenkova A.E. Ispol'zovanie parsera social'nykh setey dlya modelirovaniya
organizatsionnykh sistem [Using a social network parser for modeling of organizing systems],
Informatizatsiya i svyaz' [Informatization and communication], 2022, No 2, pp. 30-34.
17. Muntyan E.R. Formirovanie tsifrovogo portreta sub"ekta na osnove parsinga seti dlya postroeniya
kar'ernoy traektorii [Formation of a digital portrait of the subject based on network parsing to build a career
trajectory], Informatizatsiya i svyaz' [Informatization and communication], 2023, No 3. pp. 36-41.
18. Muntyan E.R. Razrabotka algoritma proportsional'nogo razdeleniya GH-grafa dlya formirovaniya zon
vliyaniya ob"ektov v slozhnykh tekhnicheskikh sistemakh [Developing a GH-graph proportional separation
algorithm to form of object influence zones in complex technical systems], Programmnye
produkty i sistemy [Software & Systems], 2023, vol. 36(3), pp. 378-387.
19. Ipatov Yu.A., Kalyagin I.V. Analiz dinamicheskikh kharakteristik tselevykh grupp sotsial'nykh setey
[Analysis of dynamic characteristics of target groups of social networks], Kibernetika i
programmirovanie [Cybernetics and programming], 2019, No. 1, pp. 37-50.
20. Muntyan E.R. Podkhody k dogeneratsii grafa reprezentativnoy vyborki dlya modelirovaniya
vzaimodeystviya sotsial'nykh grupp [Approaches to the graph increasing of representative sample for
modeling the interaction of social groups], Informatizatsiya i svyaz' [Informatization and communication],
2018, No 4, pp. 18-24.
21. Zyablova E.R., Voloshchuk V.I. Organizatsiya poiska soobshchestv v sotsial'nykh setyakh s
ispol'zovaniem GH-grafov [Organization of community search in social networks using GH graphs],
Gibridnye i sinergeticheskie intellektual'nye sistemy: Sb. statej po materialam nauchnoy VII
Vserossiyskoy Pospelovskoy konferentsii [Hybrid and synergetic intelligent systems. collection of articles
based on the materials of the scientific VII All-Russian Pospelov conference], Kaliningrad, St. Petersburg,
2024, pp. 294-302.
22. Zyablova Е.R. Modifikatsiya algoritma poiska kratchayshikh putey GH-grafa dlya analiza slozhnykh
tekhnicheskikh sistem [Modification of the algorithm for finding shortest paths for the formation of influence
zones of objects in complex technical systems on GH-graphs], Programmnye produkty i
sistemy [Software & Systems], 2024, vol. 37, No 3, pp. 354-363.