TRAJECTORY PLANNING SYSTEM FOR THE MOVEMENT OF A DELTA ROBOT FOR AGRICULTURAL PURPOSES
Cite as: V.V. Soloviev, A.Y. Nomerchuk, R.K. Filatov. Trajectory planning system for the movement of a delta robot for agricultural purposes // Izvestiya SFedU. Engineering Sciences – 2024. – N. 6. - P. 97-113. doi: 10.18522/2311-3103-2024-6-97-113
Abstract
The aim of this work is to develop a trajectory planning system for the movement of a delta robot
used for weed cultivation. The delta robot is mounted on a mobile platform that moves between rows of
cultivated plants. A vision system detects weeds and determines their coordinates. The system is tasked
with planning the trajectory of the robot's gripper during weed removal, ensuring no damage is done to
either the robot or the plants. This research is highly relevant due to the growing global population, decreasing
arable land, rural depopulation, and a reduction in the availability of agricultural machinery.
To achieve this goal, the work presents a solution to both the forward and inverse kinematics of the delta
robot using an analytical approach. A model for determining the structural parameters of the delta robot
is proposed, which allows the evaluation of how these parameters affect the robot’s working area.
The lengths of the delta robot's arms are determined, tailored to the task of weed removal in corn fields.
The trajectory planning problem is addressed by decomposing the motion into horizontal movement of the
gripper and vertical movement, considering the size of soil clumps and the magnitude of weed extraction.
Experimental results demonstrate the possibility of significantly reducing the number of trajectory points,
thus lowering the computational complexity of the proposed methods and simplifying their implementation
in the robot's onboard computer.
References
US4976582A/en (accessed 05 November 2024).
2. Roboty-propol'shchiki [Weeding robots]. Available at: https://robotrends.ru/robopedia/propolkirobotizaciya
(accessed 05 November 2024).
3. Solov'ev V.V., Nomerchuk A.Ya., Filatov R.K. Sistemnyy analiz nazemnoy robotizirovannoy platformy
sel'skokhozyaystvennogo naznacheniya [Systems analysis of a ground-based robotic platform for agricultural
purposes], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2024, No. 2 (238), pp. 69-82.
4. Solov'ev V.V., Shadrina V.V., Nomerchuk A.Ya., Filatov R.K. Perspektivy razvitiya
sel'skokhozyaystvennoy robototekhniki v usloviyakh importozameshcheniya [Prospects for the development
of agricultural robotics in the context of import substitution], Mater. XIII Vserossiyskoy
Shkoly-seminara molodykh uchenykh, aspirantov, studentov i shkol'nikov «Issledovaniya i tvorcheskie
proekty dlya razvitiya i osvoeniya problemnykh i pribrezhno-shel'fovykh zon yuga Rossii», 18-20 maya
2022 g [Proceedings of the XIII All-Russian School-Seminar of Young Scientists, Postgraduates, Students
and Schoolchildren "Research and Creative Projects for the Development and Exploitation of
Problem and Coastal-Shelf Zones of the South of Russia", May 18-20, 2022].
5. Rasporyazhenie Pravitel'stva RF ot 29 dekabrya 2021 goda № 3971-r «Ob utverzhdenii
strategicheskogo napravleniya v oblasti tsifrovoy transformatsii otrasley agropromyshlennogo i
rybokhozyaystvennogo kompleksov Rossiyskoy Federatsii na period do 2030 goda» [ Order of the
Government of the Russian Federation of December 29, 2021 No. 3971-r "On approval of the
strategic direction in the field of digital transformation of the sectors of the agro-industrial and
fisheries complexes of the Russian Federation for the period up to 2030"]. Available at:
http://publication.pravo.gov.ru/File/GetFile/0001202112310100?type=pdf (accessed 05 November
2024).
6. Bortoff S.A. Object-Oriented Modeling and Control of Delta Robots, IEEE Conference on Control
Technology and Applications, 2018, pp. 251-258.
7. Sachin K., Sudipto M. Vision-based kinematic analysis of the Delta robot for object catching,
Robotica, 2021.
8. Kostin S.V., Shamraev A.A. Sintez matematicheskoy modeli del'ta-robota dlya ispol'zovaniya v
zadachakh sortirovki tverdykh bytovykh otkhodov [Synthesis of a mathematical model of a delta robot
for use in solid municipal waste sorting tasks], Mater. VIII Mezhdunarodnoy nauchno-tekhnicheskoy
konferentsii «Informatsionnye tekhnologii v nauke, obrazovanii i proizvodstve» (ITNOP-2020) [Proceedings
of the VIII International Scientific and Technical Conference "Information Technologies in
Science, Education and Production" (ITNOP-2020)], 2020, pp. 209-213.
9. Zakirov R.I., Aliev M.I., Morozov A.I. Opredelenie kinematicheskikh kharakteristik del'ta-robota po
zadannym parametram rabochey oblasti [Determination of the kinematic characteristics of a delta robot
based on the specified parameters of the working area], Elektrotekhnicheskie i informatsionnye
kompleksy i sistemy [Electrical and information complexes and systems], 2018, No. 4. Available at:
https://cyberleninka.ru/article/n/opredelenie-kinematicheskih-harakteristik-delta-robota-po-zadannymparametram-
rabochey-oblasti (accessed 05 November 2024).
10. Sai Z., Xinjun L., Bingkai Y., Xiangdong H., Jie B. Dynamics Modeling of a Delta Robot with Telescopic
Rod for Torque Feedforward Control, Robotics, 2022, 21 p.
11. Sethia G., Kumar H., Guragol S., Sandhya S., Narasimha M. Automated Computer Vision based
Weed Removal Bot, IEEE International Conference on Electronics, Computing and Communication
Technologies (CONECCT), 2020, pp. 1-6.
12. Sadilov M.D., Timofeev G.A. Modelirovanie dvizheniya del'ta-robota po zadannoy traektorii s tsel'yu
opredeleniya silovykh faktorov, deystvuyushchikh na ego privody i sharniry [Modeling the motion of
a delta robot along a given trajectory in order to determine the force factors acting on its drives and
joints], Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [News of higher educational institutions.
Mechanical engineering], 2021, No. 11, pp. 22-30.
13. Robert L. The Delta Parallel Robot: Kinematics Solutions, Mechanical Engineering. Ohio University,
2016, 46 p.
14. Sanngoen W., Po-Ngaen W., Charitkhuan C., Doungjitjaroen K. Development of Parallel Delta Robot
System Controller Based on Raspberry Pi and FPGA, Applied Mechanics and Materials, 2016,
pp. 698-704.
15. Vasil'ev A.N. MATLAB. Samouchitel'. Prakticheskiy podkhod [MATLAB. Self-instruction manual.
Practical approach]. 2nd ed. Sant Petersburg: Nauka i Tekhnika, 2015, 448 p.
16. Pshikhopov V., Medvedev M., Soloviev V. Multi-mode control system of an unmanned vessel with
fuzzy hybridization of controllers, 2019 6th International Conference on Control, Decision and Information
Technologies, CoDIT 2019: 6, Paris, 23–26 April 2019. Paris, 2019, pp. 1221-1226.
17. Filimonov A.B., Filimonov N.B. Konstruktivnye aspekty metoda potentsial'nykh poley v mobil'noy
robototekhnike [Constructive aspects of the potential field method in mobile robotics], Avtometriya
[Avtometriya], 2021, Vol. 57, No. 4, pp. 45-53.
18. Medvedev M.Yu., Lazarev V.S. Algoritm formirovaniya traektorii gruppy podvizhnykh ob"ektov v
dvumernoy srede s ispol'zovaniem neustoychivykh rezhimov [Algorithm for forming the trajectory of
a group of moving objects in a two-dimensional environment using unstable modes], Nauchnyy vestnik
Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Scientific Bulletin of the Novosibirsk
State Technical University], 2016, No. 3 (64), pp. 17-29.
19. Alkhaddad M., Mironov K.V., Dergachev S.A. [i dr.]. Lokal'noe planirovanie traektorii kolesnogo
robota v ogranichennoy srede na osnove model'nogo prognoziruyushchego upravleniya [Local trajectory
planning of a wheeled robot in a limited environment based on model predictive control],
Robototekhnika i tekhnicheskaya kibernetika [Robotics and Technical Cybernetics], 2023, Vol. 11,
No. 3, pp. 205-214.
20. Akima Hiroshi. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures,
J. ACM, 1970, Vol. 17, pp. 589-602.