METHOD OF MOVING OBJECT POSITIONING WITHOUT USING GLOBAL GEO-REFERENCED DATA
Cite as: E.V. Lishchenko, E.V. Melnik, A. S. Matvienko, A.Yu. Budko. Method of moving object positioning without using global geo-referenced data // Izvestiya SFedU. Engineering Sciences – 2024. – N. 6. - P. 85-96. doi: 10.18522/2311-3103-2024-6-85-96
Abstract
The paper considers the problem of determining the current coordinates of moving object in the
conditions of unstable signal from the global navigation satellite system (GNSS). The relevance of the
work is due to the fact that in recent years moving object are increasingly used in virtually all sectors of
industry, agriculture, transportation, solving a variety of tasks of surveillance, reconnaissance, monitoring
the state of controlled objects, search and rescue operations, cargo delivery and much more. At the same
time, the success of flight missions largely depends on how accurately and efficiently its onboard navigation
system works in real time. The existing solutions for creating onboard positioning systems involve the
use of inertial and GNSS. However, they have the disadvantage of partial or complete absence of data
from the GNSS (Global Positioning System). This paper describes a method for maintaining a given accuracy
of moving object spatial positioning under conditions of partial or complete absence of data from the
object's GSP. This approach is based on a combination of computer vision methods for processing video
stream frames from the moving object on-board vision system (OVS) in order to ensure positioning accuracy
under conditions of partial or complete absence of data from satellite navigation systems. Based on
the advanced method, an algorithm has been developed for automated determination of moving object
coordinates in the absence of georeferencing data from global positioning systems (GPS). Experiments
have been carried out, which demonstrated the reduction of time costs for description and matching of key
points and improvement of the accuracy of image matching. The developed algorithm was used to solve
the problem of satellite image matching, which is an important step in the moving object positioning problem
without the use of global geo-referencing data.
References
[New and promising directions for the application of unmanned aerial vehicle], Izvestiya TulGU.
Tekhnicheskie nauki [Izvestiya Tula State University. Technical science], 2022, Issue 3, pp. 227-232.
2. Kupriyanov A.O. Global'nye navigatsionnye sputnikovye sistemy: ucheb. posobie [Global navigation
satellite systems: textbook]. Moscow: MII-GAiK, 2017, 76 p.
3. Mustaev A.F. Inertsial'nye navigatsionnye sistemy [Inertial navigation systems], Vestnik nauki [Herald
of Science], No. 8 (17), Vol. 3, pp. 45-48.
4. Vavilova N.B., Golovan A.A., Parusnikov N.A. Kratkiy kurs teorii inertsial'noy navigatsii [Brief course
in the theory of inertial navigation]. Moscow: IPU RAN, 2022, 148 p.
5. Rublee E. ORB: An efficient alternative to SIFT or SURF, Proc. of International conference on computer
vision, 2011, pp. 2564-2571.
6. DeTone D., Malisiewicz T., Rabinovich A. Superpoint: Self-supervised interest point detection and
description, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2018, pp. 224-236.
7. Zubov I.G. Metod avtomaticheskogo opredeleniya klyuchevykh tochek ob"ekta na izobrazhenii
[Method for automatic detection of key points of an object in an image], Izvestiya vuzov Rossii.
Radioelektronika [Izvestiya Universities of Russia. Radio Electronics], 2020, Vol. 23, No. 6, pp. 6-16.
DOI: 10.32603/1993-8985-2020-23-6-6-16.
8. Makarov A.S., Bolsunovskaya M.V. Sravnitel'nyy analiz metodov obnaruzheniya osobykh tochek na
izobrazheniyakh pri razlichnykh urovnyakh osveshcheniya [Comparative analysis of methods for detecting
special points in images at different illumination levels], Nauchno-tekhnicheskie vedomosti
SPbGPU. Informatika. Telekommunikatsii. Upravlenie [Scientific and technical statements of
SPbSPU. Computer science. Telecommunications. Management], 2018, No. 11:2, pp. 7-18.
9. Bay H., Tinne T., Luc V.G. SURF: speeded up robust features, Computer Vision and Image Understanding,
2008, Vol. 110, No. 3, pp. 346-359. DOI: 10.1007/11744023_32.
10. Rublee E., Rabaud V., Konolige K., Bradski G. ORB: an efficient alternative to SIFT or SURF, in
Proceedings of the 2011 International Conference on Computer Vision, pp. 2564-2571. IEEE, Barcelona,
Spain, November 2011. DOI: 10.1109/ICCV.2011.6126544.
11. Bondarenko V.A., Kaplinskiy G.E., Pavlova V.A., Tupikov V.A. Metod poiska i sopostavleniya
klyuchevykh osobennostey izobrazheniy dlya raspoznavaniya obrazov i soprovozhdeniya ob"ektov
[Method of searching and matching key features of images for pattern recognition and object tracking],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2019, pp. 281-293.
12. Denisov A.A., Novikov A.I. Analiz metodov detektirovaniya, opisaniya i sopostavleniya klyuchevykh
tochek izobrazheniy [Analysis of methods for detecting, describing and matching key points of images],
Vestnik RGRTU [Vestnik of RSREU], 2024, No. 89, pp. 104-116.
13. Xu N., Nikolentzos G., Vazirgiannis M., Boström H. Image Keypoint Matching Using Graph Neural
Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds),
Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational
Intelligence, Vol. 1073. Springer, Cham, 2022.
14. Novikov A.I., Pron'kin A.V. Metody tsifrovoy obrabotki izobrazheniy podstilayushchey poverkhnosti
[Methods of digital processing of images of the underlying surface]. Moscow: Goryachaya liniya-
Telekom, 2023, 224 p.
15. Mikolajczyk K., Schmid C. A performance evaluation of local descriptors, IEEE transactions on pattern
analysis and machine intelligence, 2005, pp. 1615-1630.
16. Tavish Srivastava Guide to K-Nearest Neighbors Algorithm in Machine Learning. Available at:
https://www.analyticsvidhya.com/articles/knn-algorithm/ (accessed 22 November 2024).
17. Chen Y., Zhao L., Mei P. Monochromatic Mutual Nearest Neighbor Queries Over Uncertain Data, In:
Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019, Lecture Notes in
Computer Science, Vol. 11632. Springer, Cham, 2019.
18. Lee Byeong-Joo & Baskes, M.I. & Kim, Hanchul & Cho, Yang. Second nearest-neighbor modified
embedded atom method potential for BCC transition metals, Phys. Rev. B, 2001, 64.
10.1103/PhysRevB.64.184102.
19. Zhang Y. et al. Local Adaptive Clustering Based Image Matching for Automatic Visual Identification,
2023 China Automation Congress (CAC). IEEE, 2023, pp. 5686-5690.
20. Debella-Gilo M., Kääb A. Locally adaptive template sizes for matching repeat images of mass movements,
2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada,
2011, pp. 4281-4284.