SOME METHODS FOR DATA FLOW SYNCHRONIZATION IN DIGITAL SIGNAL PROCESSING SYSTEMS
Abstract
The paper proposes some methods of providing coherent data processing in radar and communication
systems that include phased arrays. An approach is developed to collect digitized data from the antenna
elements of phased array and transfer information between distributed nodes that perform digital
signal processing. To ensure coherent data processing and transmission, it is proposed to use a reference
clock frequency signal and a common machine time, which are generated in the central node and distributed
through the channels with the same delay. All control actions in the processing nodes are based on
these signals. For the transmission of digitized data from the antenna elements of the phased array in the
work it is proposed to use the transmission by fragments of operands with information integrity control
and time reference of the digitized data. The experiments conducted on a real directional pattern formation
device confirmed the effectiveness of this method and its suitability for practical use. The development
of digital signal processing systems with phased array is constantly moving forward, and new radar
systems with high resolution and sufficient sensitivity are required. Usually, to increase the resolution, the
number of antenna elements is increased. However, this leads to an increase in the size of the antenna and
hence the length of the links. As the length of the link increases, differences in signal propagation paths
may occur due to the variation in the characteristics of optical links and the influence of external factors
on the signal as it is transmitted through longer links. This can lead to inhomogeneity in delays between
synchronization channels and disruption of the coherent processing system. In this regard, a new method
of dynamic compensation of delays in the channels of the common machine time system for correct operation
with long communication lines is proposed in this paper.
References
devices and antennas], ed. by D.I. Voskresenskogo. 2nd ed. Moscow: Radiotekhnika, 2006, 376 p.
2. Fomin A.N., Tyapkin V.N., Dmitriev D.D. Teoreticheskie i fizicheskie osnovy radiolokatsii i
spetsial'nogo monitoringa: uchebnik [Theoretical and physical basis of radar and special monitoring:
textbook], ed. by Ishchuk I.N. Krasnoyar: SFU, 2016, 292 p.
3. Teplikova V.I., Sentsov A.A., Nenashev V.A., Polyakov V.B. Analiz diagrammy napravlennosti ploskoy
mnogoelementnoy aktivnoy fazirovannoy antennoy reshetki [Directional pattern analysis of a planar
multi-element active phased array antenna array], Tr. MAI [Trudy MAI], 2022, No. 125. Available at:
https://cyberleninka.ru/article/n/analiz-diagrammy-napravlennosti-ploskoy-mnogoelementnoyaktivnoy-
fazirovannoy-antennoy-reshetki (accessed 25 October 2024).
4. Grigor'ev L.N. TSifrovoe formirovanie diagrammy napravlennosti v fazirovannykh antennykh
reshetkakh: monografiya [Digital directional pattern formation in phased antenna arrays: monograph].
Moscow: Radiotekhnika, 2010, 144 p.
5. Zhenetl' S.N., Kushtanok S.A. Sovremennoe razvitie arkhitektur mikroprotsessorov [Modern development of
microprocessor architectures], Novye tekhnologii [New technologies], 2009, No. 2. Available at:
https://cyberleninka.ru/article/n/sovremennoe-razvitie-arhitektur-mikroprotsessorov (accessed 25 October
2024).
6. Gorobets A.V., Sukov S.A., Trias F.Kh. Problemy ispol'zovaniya sovremennykh superkomp'yuterov pri
chislennom modelirovanii v gidrodinamike i aeroakustike [Problems of using modern supercomputers in
numerical modeling in hydrodynamics and aeroacoustics], Uchenye zapiski TsAGI [Scientific notes of
TsAGI], 2010, No. 2. Available at: https://cyberleninka.ru/article/n/problemy-ispolzovaniya-sovremennyhsuperkompyuterov-
pri-chislennom-modelirovanii-v-gidrodinamike-i-aeroakustike (accessed 25 October
2024).
7. Khakhanov V.I., Obrizan V.I., Mel'nikova O.V. Obzor mezhdunarodnogo rynka elektronnykh
tekhnologiy [An overview of the international market for electronic technologies], Vestnik NTU KhPI
[Bulletin of the National Technical University Kharkov Polytechnic Institute], 2004, No. 46. Available
at: https://cyberleninka.ru/article/n/obzor-mezhdunarodnogo-rynka-elektronnyh-tehnologiy (accessed
25 October 2024).
8. Kalyaev I.A., Levin I.I., Semernikov E.A. Vysokoproizvoditel'nye rekonfiguriruemye vychislitel'nye
sistemy dlya tsifrovoy obrabotki signalov [High-performance reconfigurable computing systems for
digital signal processing], Tr. Rossiyskogo nauchno-tekhnicheskogo obshchestva radiotekhniki,
elektroniki i svyazi imeni A.S. Popova. Seriya: Tsifrovaya obrabotka signalov i ee primenenie [Proceedings
of the Russian Scientific and Technical Society of Radio Engineering, Electronics and Communications
named after A.S. Popov. Series: Digital signal processing and its application], 2010,
Issue ХII – 1, pp. 13-18.
9. Dordopulo A.I., Kalyaev I.A., Levin I.I., Semernikov E.A. Vysokoproizvoditel'nye mnogoprotsessornye
sistemy s rekonfiguriruemoy arkhitekturoy dlya tsifrovoy obrabotki signalov [Highperformance
multiprocessor systems with reconfigurable architecture for digital signal processing],
Vestnik Kontserna PVO «Almaz-Antey» [Bulletin of the Almaz-Antey Air Defense Concern], 2011,
No. 2 (6), pp. 88-104.
10. Chkan A.V. Povyshenie real'noy proizvoditel'nosti RVS pri reshenii zadach tsifrovoy obra-botki
izobrazheniy s ispol'zovaniem bystrogo preobrazovaniya Fur'e [Improving the real performance of
RCS in solving digital image processing problems using the fast Fourier transform], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2020, No. 7 (217). Available at:
https://cyberleninka.ru/article/n/povyshenie-realnoy-proizvoditelnosti-rvs-pri-reshenii-zadachtsifrovoy-
obrabotki-izobrazheniy-s-ispolzovaniem-bystrogo (accessed 25 October 2024).
11. Kuan I.A., Azimbaev D.Zh., Shcherbachenya A.N., Gerber A.S. Volokonno-opticheskie linii svyazi
[Fiber-optic communication lines], Vestnik nauki [Bulletin of science], 2018, No. 5 (5). Available at:
https://cyberleninka.ru/article/n/volokonno-opticheskie-linii-svyazi (accessed 25 October 2024).
12. Savochkin I.A., Troynikov G.M., Troynikova N.S., Turlakov P.V. Sistema edinogo vremeni dlya
vysokotochnoy sinkhronizatsii raznesennykh radiolokatsionnykh postov [A unified time system for
high-precision synchronization of distributed radar posts], Vestnik Kontserna VKO «Almaz – Antey»
[Bulletin of the Almaz-Antey Air Defense Concern], 2014, No. 2, pp. 49-53.
13. Sukhman S.M., Bernov A.V., Shevkoplyas B.V. Sinkhronizatsiya v telekommunikatsionnykh sistemakh:
Analiz inzhenernykh resheniy [Synchronization in telecommunication systems: Analysis of engineering
solutions]. Moscow: Eko-Trendz, 2002m 268 p.
14. Olifer V., Olifer N. Komp'yuternye seti. Printsipy, tekhnologii, protokoly: uchebnik dlya vuzov [Computer
networks. Principles, technologies, protocols: textbook for universities]. 4th ed. Saint Petersburg:
Piter, 2006, 672 p.
15. Pyatibratov A.P., Gudyno L.P., Kirichenko A.A. i dr. P99 Vychislitel'nye sistemy, seti i
telekommunikatsii: uchebnik [Computer systems, networks and telecommunications: textbook]. 2nd
ed., ed. by A.P. Pyatibratova. Moscow: Finansy i statistika, 2004, 512 p.
16. Veniaminov S.S. Kosmicheskiy musor ugrozhaet planete [Space debris threatens the planet],
Vozdushno-kosmicheskaya sfera [Air and space sphere], 2016, No. 1 (86). Available at:
https://cyberleninka.ru/article/n/kosmicheskiy-musor-ugrozhaet-planete (accessed 24 July 2024).
17. Klyushnikov V.Yu. Sindrom Kesslera: budet li zakryta doroga v kosmos? [Kessler syndrome: will the
road to space be closed?], VKS [Aerospace sphere], 2021, No. 4 (109). Available at:
https://cyberleninka.ru/article/n/sindrom-kesslera-budet-li-zakryta-doroga-v-kosmos (accessed 25 October
2024).
18. Dzyuba A.P. Perspektivy razvitiya fazirovannykh antennykh reshetok [Prospects for the development
of phased antenna arrays], Vestnik DGTU. Tekhnicheskie nauki [Bulletin of DSTU. Technical sciences],
2013, No. 3. Available at: https://cyberleninka.ru/article/n/perspektivy-razvitiya-fazirovannyhantennyh-
reshetok (accessed 25 October 2024).
19. Listvin A.V, Listvin V.N. Reflektometriya opticheskikh volokon [Reflectometry of optical fibers].
Moscow: LESARart, 2005, 208 p.
20. Aleshin V.S., Dogaev S.G. Zaderzhki rasprostraneniya signalov v setyakh sputnikovoy svyazi [Signal
propagation delays in satellite communication networks], T-Comm, 2019, No. 5. Available at:
https://cyberleninka.ru/article/n/zaderzhki-rasprostraneniya-signalov-v-setyah-sputnikovoy-svyazi (accessed
27 October 2024).