INTERPHASE INTERACTION IN THE SYSTEM Ga-As-ZnO DURING GaAs MOLECULAR-BEAM EPITAXY

  • Наталия Черненко Южный федеральный университет
  • Сергей Балакирев Южный федеральный университет
  • Михаил Еременко Южный федеральный университет
  • Максим Солодовник Южный федеральный университет
Keywords: Molecular-beam epitaxy, gallium arsenide, intrinsic oxide, phase formation, thermodynamics, gallium oxide, arsenic oxide

Abstract

Our paper presents the results of the study of phase formation processes in the Ga-As-ZnO system, taking into account the peculiarities of GaAs molecular beam epitaxy, with the aim of studying the possibility of using thin ZnO films to initiate self-catalytic growth of GaAs nanowires. The results of calculations of double and triple phase diagrams possible in the system under consideration in specified temperature and pressure ranges are presented. The analysis of possible intermediate and final products of the reactions of interaction between components in the system under consideration. The equations of the main and intermediate chemical reactions occurring in the system are determined and compiled. The temperature dependences of changes in the Gibbs free energy ΔG(T) are calculated for the main and intermediate reactions between the main components of the system under consideration: crystalline GaAs (substrate), atomic (molecular) Ga and As fluxes from the vapor phase, and amorphous (polycrystalline) ZnO films on the substrate surface. It is shown that ZnO films behave like GaAs native oxide, however, they have a higher temperature stability. It was also shown that, under the conditions of epitaxy, GaAs can react not only with crystalline GaAs substrates, but also with growth components, including to form volatile compounds. Dominance modes of this type reactions are established.

References

1. Thelander C., Agarwal P., Brongersma S., Eymery J., Feiner L., Forchel A., Scheffler M., Riess W., Ohlsson B., Gösele U., Samuelson L. Nanowire-based one-dimensional electronics // Nano Today. 2006. – V.10. – p.28-35.
2. Hayden O., Agarwal R., Lu W. Semiconductor nanowire devices // Nano Today. 2008. – V.3. – p.12–22.
3. D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, J.S. Harris. High-Efficiency Nanostructured Window GaAs Solar Cells // Nano Letters. 2013. – V.13. – p.4850-4856.
4. A. M. Mozharov, D. A. Kudryashov, A. D. Bolshakov, G. E. Cirlin, A. S. Gudovskikh, I. S. Mukhin. Numerical simulation of the properties of solar cells based on GaPNAs/Si heterostructures and GaN nanowires // Semicondors. 2016. – V.50. – p.1521–1525.
5. C. Shyemaa Shehata, C. Fradin, R. LaPierre, C. Couteau, G. Weihs. Self-Directed Growth of AlGaAs Core-Shell Nanowires for Visible Light Applications // Nano Letters. 2007. – V.7, №9. – p. 2584-2589.
6. A. S. Togonal, et al. Core–Shell Heterojunction Solar Cells Based on Disordered Silicon Nanowire Arrays // Journal of Physical Chemistry C. 2016. – V.120. – p.2962-2972.
7. Chen R., Tran T. D., Ng K. W., Ko W. S., Chuang L. C., Sedgwick F. G. Chang-Hasnain C. Nanolasers grown on silicon // Nature Photonics. 2011. – V.5. – p.170–175.
8. Huang B., Yang Y., Lin T., Yang W. A simple and low-cost technique for silicon nanowire arrays based solar cells // Solar Energy Materials & Solar Cells. 2012. – V.98. – p.357–362.
9. S. Zhao, et al. III-Nitride nanowire optoelectronics // Progress in Quantum Electronics. 2015. – V.44. – p.14-68.
10. M. Karimi, et al. Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors // Nano Letters. 2017. – V.17. – p.3356-3362.
11. J. Svensson, et al. Diameter-Dependent Photocurrent in InAsSb Nanowire Infrared Photodetectors // Nano Letters. 2013. – V.13. – p.1380-1385.
12. D. Ren, et al. Influence of pitch on the morphology and luminescence properties of self-catalyzed GaAsSb nanowire arrays // Applied Physics Letters. 2016. – V.109. – p.243102.
13. 13. Johansson J., Wacaser B., Thelander K. D., Seifert W. Growth related aspects of epitaxial nanowires // Nanotechnology. 2006. – V.17. – p.355–361.
14. 14. V. G. Dubrovskii, N. V. Sibirev. Effect of nucleation on the crystalline structure of nanowhiskers // Technical Physics Letters. 2009. – V.35.p.380–383.
15. A. I. Hochbaum, et al. Semiconductor Nanowires for Energy Conversion // Chemical Reviews. 2010. – V.110. – p.527–546.
16. H. Wang, et al. A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays // Nano Lett. 2011. – V.11. – p.1646-1650.
17. C. Colombo. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy // Physical Review B. 2008. – V.77. – p.1-5.
18. S. Yua, G. Miaoa, Y. Jina, L. Zhanga, H. Songa, H. Jianga, Z. Lia, D. Lia, X. Sun. Growth and optical properties of catalyst-free InP nanowires on Si (100) substrates // Physica E. 2010. – V.42. – p.1510-1543.
19. C. García Núñezn, A. F. Braña, N. López, B. J. García GaAs nanowires grown by Ga-assisted chemical beam epitaxy: Substrate preparation and growth kinetics // J. of Crystal Growth. 2015. – V.430. – p.108–115.
20. Безрядин Н.Н., и др. Влияние финишной подготовки поверхности арсенида галлия на спектр электронных состояний n-GaAs(100) // ФТП. 2012. – №6. – c. 756-760.
21. Солодовник М.С. Фазообразование в системе Ga-As-O в условиях молекулярно-лучевой эпитаксии // Известия ЮФУ. Технические науки. 2017. – №4. – с.201 – 211.
22. Агеев О.А., Балакирев С.В., Солодовник М.С., Еременко М.М. Влияние взаимодействия в системе Ga-As-O на морфологию поверхности GaAs при молекулярно-лучевой эпитаксии // Физика твердого тела. 2016. – Т.58, №5. – с.1011-1018.
Published
2019-07-13
Section
SECTION IV. NANOTECHNOLOGIES AND MATERIAL SCIENCE