MONTE CARLO SIMULATION OF In/GaAs DROPLET EPITAXY PROCESSES ON STRUCTURED SUBSTRATES
Abstract
The paper presents the results of theoretical studies of the self-organization processes of nanoscale metal droplets obtained by the droplet epitaxy method in an In/GaAs (001) system on substrates with predetermined structural inhomogeneities using Monte Carlo simulation. At the same time, the shape and geometrical characteristics of the specified grooves, as well as the distance between them (density), were varied. The processes of nucleation and growth of droplet nanostructures on structured GaAs surfaces were considered taking into account the main control parameters of the droplet epitaxy technique. The calculation results showed that on substrates with complex morphology the probability of island nucleation is distributed non-uniformly and depends on the surface area. The study showed that in order to improve the accuracy of positioning of nanostructures and their homogeneity, triangular-shaped grooves with large aspect ratios of geometric dimensions are most preferred. The use of modified surfaces allows to govern the size and density of self-organizing nanostructures, providing the possibility of obtaining laterally related quantum-size structures.
References
2. Ageev O A, Solodovnik M S, Balakirev S V and Eremenko M M. Effect of interaction in the Ga–As–O system on the morphology of a GaAs surface during molecular-beam epitaxy // Physics of the Solid State. 2016. – V.58, №5. – p.1045–1052.
3. Balakirev S V, Eremenko M M, Mikhaylin I A, Klimin V S and Solodovnik M S. Droplet epitaxy of In/AlGaAs nanostructures on the As-stabilized surface // Journal of Physics: Conference Series. 2018. – V.1124. – p.022018.
4. Vurgaftman I and Meyer J R. Band parameters for III–V compound semiconductors and their alloys // Journal of Applied Physics. 2001. – V.89. – p.5815–5875.
5. Ozdemir S, Suyolcu Y E, Turan S and Aslan B. Influence of the growth conditions on the optical and structural properties of self-assembled InAs/GaAs quantum dots for low As/In ratio // Applied Surface Science. 2017. – V.392. – p.817–825.
6. Dilger M, Haug R, Eberl K and Von Klitzing K. Single-electron transistors with a self-assembled quantum dot // Semicond. Science Technology. 1996. – V.11. – p.1493-1497.
7. Klimin V S, Solodovnik M S, Lisitsyn S A, Rezvan A A and Balakirev S V. Formation of nanoscale structures on the surface of gallium arsenide by local anodic oxidation and plasma chemical etching // Journal of Physics: Conference Series. 2018. – V.1124. – p.041024.
8. Ageev O A, Solodovnik M S, Balakirev S V, Eremenko M M and Mikhaylin I A. Monte Carlo simulation of kinetic effects on GaAs/GaAs(001) MBE growth // Journal of Crystal Growth. 2017. – V.457. – p.46-51.
9. Luscombe J H, Randall J N and Bouchard A M. Resonant tunneling quantum-dot diodes: physics, limitations, and technological prospects // Proceedings of the IEEE. 1991. – V.79. – p.1117–1130.
10. Solodovnik M S, Karenkikh O G, Balakirev S V, Petrov S I, Ryzhuk R V, Alexeev A N and Ageev O A. MBE formation of self-catalyzed GaAs nanowires using ZnO nanosized films // Journal of Physics: Conference Series. 2018. – V.1124. – p.081024.
11. Balocco C, Song A and Missous M. Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures // Applied physics letters. 2004. – V.85. – p.5911–5913.
12. Balakirev S V, Solodovnik M S, Eremenko M M, Mikhaylin I A and Ageev O A. Monte Carlo investigation of the MBE growth of GaAs on the surfaces with different crystallographic orientations // Journal of Physics: Conference Series. 2017. – V.917. – p.032034.
13. Ageev O A, Solodovnik M S, Balakirev S V, Eremenko M M and Mikhaylin I A. Effect of GaAs native oxide upon the surface morphology during GaAs MBE growth // Journal of Physics: Conference Series. 2016. – V.741, №1. – p.012012.
14. Geller M, Marent A, Nowozin T, Bimberg D, Akçay N and Öncan N. A write time of 6ns for quantum dot–based memory structures // Applied physics letters. 2008. –
V.92. – p.092108.
15. Ageev O A, Solodovnik M S, Balakirev S V and Eremenko M M. Kinetic Monte Carlo simulation of GaAs(001) MBE growth considering V/III flux ratio effect // Journal of Vacuum Science and Technologies B. 2016. – V.34(4). – p.041804.
16. Лисицын С.А., С.В. Балакирев С.В., Авилов В.И., Коломийцев А.С., Климин В.С., Солодовник М.С., Коноплев Б.Г., Агеев О.А. Исследование режимов наноразмерного профилирования эпитаксиальных структур GaAs методом фокусированных ионных пучков // Российские нанотехнологии.2018. – Т.13, №1-2. – с.28-35.
17. Агеев О.А., Солодовник М.С., Балакирев С.В., Михайлин И.А. Исследование влияния соотношения потоков V/III на процессы субмонослойной эпитаксии GaAs/GaAs(001) методом Монте-Карло // Журнал технической физики. 2016. – Т.86, №7. – с.15-21.
18. Balakirev S V, Eremenko M M, Mikhaylin I A and Solodovnik M S. Study of the geometrical parameters of In nanostructures during droplet epitaxy on the As-stabilized GaAs(001) surface // Journal of Physics: Conference Series. 2018. – V.1124. – p.022025.
19. Balakirev S V, Solodovnik M S, Eremenko M M, Mikhaylin I A and Ageev O A. Analytical–Monte Carlo model of the growth of In nanostructures during droplet epitaxy on the triangle-patterned GaAs substrates // Journal of Physics: Conference Series. 2018. – V.1124. – p.022001.
20. Somaschini C, Bietti S, Koguchi N and Sanguinetti S. Fabrication of multiple concentric nanoring structures // Nano Letters. 2009. – V.9. – p.3419–3424.
21. Solodovnik M S, Balakirev S V, Eremenko M M, Mikhaylin I A, Avilov V I, Lisitsyn S A and Ageev O A. Droplet epitaxy of GaAs nanostructures on the As-stabilized GaAs(001) surface // Journal of Physics: Conference Series. 2017. – V.917. – p.032037.
22. Kim J S and Koguchi N. Near room temperature droplet epitaxy for fabrication of InAs quantum dots // Applied physics letters. 2004. – V.85. – p.5893–5895.
23. Balakirev S V, Solodovnik M S and Ageev O A. Kinetic Monte Carlo simulation of the indium droplet epitaxy on the Ga-terminated GaAs(001) surface // Journal of Physics: Conference Series. 2017. – V.917. – p.032033.
24. Mano T, Watanabe K, Tsukamoto S, Fujioka H, Oshima M and Koguchi N. New self-organized growth method for InGaAs quantum dots on GaAs (001) using droplet epitaxy // Japanese journal of applied physics. 1999. – V.38. – p.1009–1011.
25. Krishna S. Quantum dots-in-a-well infrared photodetectors // Journal of Physics D: Applied Physics. 2005. – V.38. – p.2142.
26. Perera A. Quantum structures for multiband photon detection // Opto-Electronics Review. 2006. – V.14. – p.99–108.
27. Le Ru E, Howe P, Jones T and Murray R. Strain-engineered InAs/GaAs quantum dots for long-wavelength emission // Physical Review B. 2003. – V.67. – p.165303.
28. Schneider C, Heindel T, Huggenberger A, Weinmann P, Kistner C, Kamp M, Reitzenstein S, Höflinga S and Forchel A. Single photon emission from a site-controlled quantum dot-micropillar cavity system // Applied physics letters. 2009. – V.94. – p.111111.
29. Kuroda T, Abbarchi M, Mano T, Watanabe, Yamagiwa M, Kuroda K, Sakoda K, Kido G, Koguchi N, Mastrandrea C, Cavigli L, Gurioli M, Ogawa Y and Minami F. Photon Correlation in GaAs Self-Assembled Quantum Dots // Applied Physics Express. 2008. – V.1. – p.042001.
30. Dousse A, Suffczyn’ski J, Beveratos A, Krebs O, Lemaıtre A, Sagnes I, Bloch J, Voisin P and Senellart P. Ultrabright source of entangled photon pairs // Nature. 2010. – V.466. – p.217-220.
31. Khosroshahyab M B, Moaiyeri M H, Angizi S, Bagherzadeh N and Navi K. Quantum-dot cellular automata circuits with reduced external fixed inputs // Microprocessors and microsystems. 2017. – V.50. – p.154–163.
32. Cavigli L, Abbarchi M, Bietti S, Somaschini C, Sanguinetti S, Koguchi N, Vinattieri A and Gurioli M. Individual GaAs quantum emitters grown on Ge substrates // Applied physics letters. 2011. – V.98. – p.103104.
33. Dias N L, Garg A, Reddy U, Young J D, Verma V B, Mirin R P and Coleman J J. Directed self-assembly of InAs quantum dots on nano-oxide templates // Applied physics letters. 2011. – V.98. – p.141112.
34. Kim J S, Kawabe M and Koguchi N. Ordering of high-quality InAs quantum dots on defect-free nanoholes // Applied physics letters. 2006. – V.88. – p.072107.
35. Balakirev S.V., Solodovnik M.S., Ageev O.A. Hybrid analytical–Monte Carlo model for In/GaAs(001) droplet epitaxy: Theory and experiment // Physica Status Solidi B. 2018. – V.255, № 4. – p. 1700360.
36. Балакирев С.В., Блинов Ю.Ф., Солодовник М.С. Модель начальной стадии гомоэпитаксиального роста GaAs методом МЛЭ с учетом соотношения потоков ростовых компонент // Известия ЮФУ. Технические науки. 2014. – №9. – с.94-105.
37. Солодовник М.С., Балакирев С.В., Еременко М.М. Моделирование методом Монте-Карло влияния потока тетрамеров мышьяка на эпитаксиальный рост GaAs(001) // Известия ЮФУ. Технические науки. 2015. – №9. – с.134-143.