SOME ASPECTS OF APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN INFORMATION SECURITY (REVIEW)

  • S.Y. Melnikov Patrice Lumumba Peoples' Friendship University of Russia
  • R.V. Meshcheryakov IPU RAS
  • V.А. Peresypkin Academy of Cryptography of the Russian Federation
Keywords: Information security, cybersecurity, technical leakage channel, artificial intelligence, trusted artificial intelligence

Abstract

Artificial intelligence (AI) technologies are one of the most dynamically developing areas of information
processing. AI technologies are used both to ensure the information security and to organize attacks
on information security tools. AI systems themselves may contain vulnerabilities and be susceptible
to various types of attacks. The article analyzes some aspects of the use of AI technologies in information
security tasks. Within the framework of the task of biometric identification, threats of falsification of biometric
identification characteristics in order to obtain access rights, and ways to counter such threats are
considered. The advantages of using AI in protecting information in computer systems and networks in
comparison with traditional means of protection are analyzed. Using the example of an acoustic channel
of information leakage from a keyboard, the use of AI technologies for processing data from technical
leakage channels is illustrated. Methods for increasing the information content of such channels using temporary convolutional networks and image classification models, as well as ways to counter them, are
considered. Special attention is paid to information security issues in increasingly popular systems for
compressing and transmitting information without significant semantic losses (Semantic Communications).
A number of information security issues that arise when using large language models such as
ChatGPT, capable of massively generating unique “human-like” content and using it to organize phishing
and other social engineering attacks, are considered. An attack on AI systems using a covert channel is
described. Attention is paid to the need to develop trusted artificial intelligence technologies.

References

1. Natsional'naya strategiya razvitiya iskusstvennogo intellekta na period do 2030 goda, utverzhdena
Ukazom Prezidenta Rossiyskoy Federatsii ot 10 oktyabrya 2019 g. № 490 [National Strategy for the
Development of Artificial Intelligence through 2030, approved by the Decree of the President of the
Russian Federation, October 10, 2019, No. 490].
2. McCorduck P., Cfe C. Machines who think: A personal inquiry into the history and prospects of artificial
intelligence. AK Peters/CRC Press, 2004.
3. Mughal A.A. Artificial Intelligence in Information Security: Exploring the Advantages, Challenges,
and Future Directions, Journal of Artificial Intelligence and Machine Learning in Management, 2018,
Vol. 2, No. 1, pp. 22-34.
4. Materialy pervogo foruma «Tsifrovaya ekonomika. Tekhnologii doverennogo iskusstvennogo
intellekta». Moskva, MGU, klaster «Lomonosov», 23 maya 2023 g. [Proceedings of the first forum
"Digital Economy. Technologies of Trusted Artificial Intelligence". Moscow, Moscow State University,
Lomonosov Cluster, May 23, 2023]. Available at: https://ib-bank.ru/trust-ai/materials23 (accessed
on 10 October 2024).
5. Meshcheryakov R.V., Mel'nikov S.Yu., Peresypkin V.A., Khorev A.A. Perspektivnye napravleniya
primeneniya tekhnologiy iskusstvennogo intellekta pri zashchite informatsii [Promising areas of application
of artificial intelligence technologies in information security], Voprosy kiberbezopasnosti
[Cybersecurity Issues], 2024, No. 4 (62), pp. 2-12. DOI: 10.21681/2311-3456-2024-4-02-12. EDN
GJWQWP.
6. Shelke P., Hämäläinen T. Analysing Multidimensional Strategies for Cyber Threat Detection in Security
Monitoring, In M. Lehto, & M. Karjalainen (Eds.), Proceedings of the 23rd European Conference
on Cyber Warfare and Security, 2024, 23, pp. 780-787. Academic Conferences International Ltd. Proceedings
of the European Conference on Cyber Warfare and Security. Available at:
https://doi.org/10.34190/eccws.23.1.2123 (accessed 10 October 2024).
7. Avetisyan A.I. Kiberbezopasnost' v kontekste iskusstvennogo intellekta [Cybersecurity in the Context
of Artificial Intelligence],Vestnik Rossiyskoy akademii nauk [Bulletin of the Russian Academy of Sciences],
2022, Vo.. 92, No. 12, pp. 1119-1123. DOI: 10.31857/S0869587322120039. EDN RYZRRU.
8. Camacho N.G. The Role of AI in Cybersecurity: Addressing Threats in the Digital Age, Journal of
Artificial Intelligence General science (JAIGS), 2024, Vol. 3, No. 1, pp. 143-154. ISSN 3006-4023.
9. Panoff M. et al. A review and comparison of AI-enhanced side channel analysis, ACM Journal on
Emerging Technologies in Computing Systems (JETC), 2022, Vol. 18, No. 3, pp. 1-20.
10. Zhuang L., Zhou F., Tygar J.D. Keyboard acoustic emanations revisited, ACM Transactions on Information
and System Security (TISSEC), 2009, Vol. 13, No. 1, pp. 1-26.
11. Taheritajar A., Harris Z. M., Rahaeimehr R. A Survey on Acoustic Side Channel Attacks on Keyboards,
arXiv preprint arXiv:2309.11012, 2023.
12. Harrison J., Toreini E., Mehrnezhad M. A practical deep learning-based acoustic side channel attack
on keyboards, 2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 2023, pp. 270-280.
13. Spata M. O. et al. A New Deep Learning Pipeline for Acoustic Attack on Keyboards, IntelliSys 2024.
Cham: Springer Nature Switzerland, 2024, pp. 402-414.
14. Mel'nikov S.Yu., Peresypkin V.A. Ob evolyutsii klassicheskikh veroyatnostnykh modeley yazyka v
estestvenno-yazykovykh prilozheniyakh [On the evolution of classical probabilistic language models
in natural language applications], Vestnik sovremennykh tsifrovykh tekhnologiy [Bulletin of modern
digital technologies], 2023, No. 16, pp. 4-14. EDN YDIGDT.
15. Rodrigues D. et al. A Prototype for Generating Random Key Sounds to Prevent Keyboard Acoustic
Side-Channel Attacks, 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON).
IEEE, 2024, pp. 1287-1292.
16. Yang W. et al. Semantic communications for future internet: Fundamentals, applications, and challenges,
IEEE Communications Surveys & Tutorials, 2022, Vol. 25, No. 1, pp. 213-250.
17. Wang Y. Semantic Communication Networks Empowered Artificial Intelligence of Things, 2024 IEEE
Annual Congress on Artificial Intelligence of Things (AIoT). IEEE, 2024, pp. 189-193.
18. Xie H. et al. Deep learning enabled semantic communication systems, IEEE Transactions on Signal
Processing, 2021, Vol. 69, pp. 2663-2675.
19. Bourtsoulatze E., Kurka D. B., Gündüz D. Deep joint source-channel coding for wireless image transmission,
IEEE Transactions on Cognitive Communications and Networking, 2019, Vol. 5, No. 3,
pp. 567-579.
20. Luo X. et al. Encrypted semantic communication using adversarial training for privacy preserving,
IEEE Communications Letters, 2023, Vol. 27, No. 6, pp. 1486-1490.
21. Nguyen V.L. et al. Security and privacy for 6G: A survey on prospective technologies and challenges,
IEEE Communications Surveys & Tutorials, 2021, Vol. 23, No. 4, pp. 2384-2428.
22. Li Y. et al. Secure Semantic Communications: From Perspective of Physical Layer Security, IEEE
Communications Letters, 2024. DOI: 10.1109/LCOMM.2024.3452715.
23. Hazell J. Large language models can be used to effectively scale spear phishing campaigns, arXiv
preprint arXiv:2305.06972, 2023.
24. Greco F. et al. David versus Goliath: Can Machine Learning Detect LLM-Generated Text? A Case
Study in the Detection of Phishing Emails, ITASEC 2024: The Italian Conference on CyberSecurity,
Italy. CEUR-WS Vol. 3731, 2024.
25. Bylevskiy P.G. Sotsial'no-kul'turnye riski mul'timodal'nykh bol'shikh generativnykh modeley
«iskusstvennogo intellekta» (GenAI) [Socio-cultural risks of multimodal large generative models of
"artificial intelligence" (GenAI)], Kul'tura i iskusstvo [Culture and Art], 2024, No. 6, pp. 213-224.
DOI: 10.7256/2454-0625.2024.6.70926. EDN: DWMERQ.
26. Hanley H.W.A., Durumeric Z. Machine-made media: Monitoring the mobilization of machinegenerated
articles on misinformation and mainstream news websites, Proceedings of the International
AAAI Conference on Web and Social Media, 2024, Vol. 18, pp. 542-556.
27. Simon F.M., Altay S., Mercier H. Misinformation reloaded? Fears about the impact of generative AI on
misinformation are overblown, Harvard Kennedy School Misinformation Review, 2023, Vol. 4, No. 5.
28. Liu Y. et al. ArguGPT: evaluating, understanding and identifying argumentative essays generated by
GPT models, arXiv preprint arXiv:2304.07666, 2023.
29. Wu J. et al. A survey on llm-gernerated text detection: Necessity, methods, and future directions,
arXiv preprint arXiv:2310.14724, 2023.
30. Ghosal S.S. et al. A Survey on the Possibilities & Impossibilities of AI-generated Text Detection,
Transactions on Machine Learning Research, No. 1, 2024.
31. Sadasivan V.S. et al. Can AI-generated text be reliably detected?, arXiv preprint arXiv:2303.11156,
2023.
32. Marshalko G.B., Romanenkov R.A., Trufanova Yu.A. Analiz bezopasnosti proekta natsional'nogo standarta
«Neyrosetevye algoritmy v zashchishchennom ispolnenii. Avtomaticheskoe obuchenie neyrosetevykh
modeley na malykh vyborkakh v zadachakh klassifikatsii» [Security analysis of the draft national standard
"Neural network algorithms in secure implementation. Automatic training of neural network models on
small samples in classification problems"], Tr. Instituta sistemnogo programmirovaniya RAN [Proceedings
of the Institute for System Programming of the Russian Academy of Sciences], 2023, Vol. 35, No. 6,
pp. 179-188. DOI: 10.15514/ISPRAS-2023-35(6)-11. EDN HNDIYD.
33. Grusho A.A. Skrytye kanaly i bezopasnost' informatsii v komp'yuternykh sistemakh [Covert channels
and information security in computer systems], Diskretnaya matematika [Discrete Mathematics],
1998, Vol. 10, No. 1, pp. 3-9.
34. Weiss R. et al. What Was Your Prompt? A Remote Keylogging Attack on AI Assistants, arXiv preprint
arXiv:2403.09751, 2024.
35. Turdakov D.Yu., Avetisyan A.I., Arkhipenko K.V. [i dr.]. Doverennyy Iskusstvennyy intellekt: vyzovy i
perspektivnye resheniya [Trusted Artificial Intelligence: Challenges and Promising Solutions],
Doklady Rossiyskoy akademii nauk. Matematika, informatika, protsessy upravleniya [Reports of the
Russian Academy of Sciences. Mathematics, informatics, control processes], 2022, Vol. 508, No. 1,
pp. 13-18. DOI: 10.31857/S2686954322070207. EDN CVIVCS
Published
2024-11-21
Section
SECTION I. INFORMATION PROCESSING ALGORITHMS