ОПРЕДЕЛЕНИЕ РАЗНОСТИ ФАЗ В ОПТОЭЛЕКТРОННЫХ И СВЧ ИНТЕРФЕЙСНЫХ МОДУЛЯХ СИСТЕМ СВЯЗИ С МНОГОУРОВНЕВЫМИ ФОРМАТАМИ МОДУЛЯЦИИ
Аннотация
Целью исследования является расчет и проектирование устройства, измеряющего разности
фаз сигналов, с возможностью приема команд управления и передачи результатов через высоко-
скоростной Ethernet интерфейс. Любой современный измерительный прибор оптического или
сверхвысокочастотного (СВЧ) диапазона имеет в своей конструкции важный элемент, без кото-
рого невозможно ни одно измерение, а именно – векторный вольтметр, измеряющий сдвиг фаз и
отношение амплитуд сигналов. Реализацией таких приборов практически не занимаются и такие
разработки в основном являются интеллектуальной собственностью крупных компаний, поэтому
проектирование и создание такого устройства в широкодоступном исполнении крайне необходи-
мо и актуально. Рассмотрены современные форматы модуляции и реализация транспондеров по передаче оптических сигналов с использованием многоуровневых форматов квадратурной манипу-
ляции фазовым сдвигом с двойной поляризацией (DP QPSK) и 16-ти позиционной квадратурно-
амплитудной модуляции с двойной поляризацией (DP 16QAM). Так же рассмотрены основные ме-
тоды построения векторных вольтметров с использованием микроконтроллеров и field programmable
gate arrays (FPGA), произведено моделирование оптических каналов связи и создано устрой-
ство измерения сдвига фаз. В результате исследования получен векторный вольтметр на FPGA,
который, в свою очередь, может быть использован для создания установки по измерению сдвига
фаз смесителей с подключением по Ethernet интерфейсу для передачи данных. Также на языке
аппаратного программирования Verilog HDL для FPGA Altera Cyclone V составлен программный
код для электронно-вычислительной машины (ЭВМ) по измерению разности фаз двух гармониче-
ских сигналов. Реализована программа на языке СИ для процессора ARM Cortex A9 в среде Quartus
Prime Lite в составе сверхбольшой интегральной схемы (СБИС) Cyclone V, передающая результа-
ты измерений в реальном времени по интерфейсу 1GB на ЭВМ с возможностью приема команд
управления.
Литература
40 Gbit/s [Analysis of modulation formats for DWDM systems with a speed of 40 Gbit/s], Vestnik
svyazi [Vestnik svyazi], 2012, No. 1.
2. Filippov A.V., Mal'tseva N.S. Osobennosti razvitiya sistem DWDM [Features of the development of
DWDM systems], Tekhnicheskie sredstva sistem upravleniya i svyazi: Mater. V Mezhdunarodnoy
konferentsii «Informatsionnye tekhnologii i tekhnicheskie sredstva upravleniya» [Technical means of
control and communication systems: Proceedings of the V International Conference "Information
Technologies and Technical Means of Control"]. Astrakhan': Astrakhanskiy gosudarstvennyy
tekhnicheskiy universitet, 2021, pp. 57-60.
3. Velichko M.A., Naniy O.E., Sus'yan A.A. Novye formaty modulyatsii v opticheskikh sistemakh svyazi [New
modulation formats in optical communication systems], LIGHTWAVE Russian Edition, 2005, No. 4.
4. Listvin V.N., Treshchikov V.N. DWDM sistemy [DWDM systems]. Moscow: Tekhnosfera, 2015, 296 p.
5. Golikov A.M. Modulyatsiya, kodirovanie i modelirovanie v telekommunikatsionnykh sistemakh.
Teoriya i praktika [Modulation, coding and modeling in telecommunication systems. Theory and
practice]. Saint Petersburg: Lan', 2018, 419 p.
6. Luchkovskiy D.P., Sukharev E.N., Kuklina A.I. Kvadraturnaya amplitudnaya modulyatsiya [Quadrature
amplitude modulation], Molodezh'. Obshchestvo. Sovremennaya nauka, tekhnika i innovatsii [Youth.
Society. Modern science, technology and innovation], 2016, № 15, pp. 50-51.
7. Li M., Hong W., Zhang X., Li S., Song W., Han C., Zhu M., Li W., Huang D. Transparent wavelength
conversion for a novel orthogonal FSK/IM modulation format at 40-Gb/s based on FWM effect of
SOA, Proceedings of SPIE, 2008, No. 12.
8. Gurkin N.V., Gurkin O.E. Naniy V.N. Treshchikov Opticheskie kogerentnye DWDM sistemy svyazi s
kanal'noy skorost'yu 100 Gbit/s [Optical coherent DWDM communication systems with a channel rate
of 100 Gbit/s], T-Comm: Telekommunikatsii i transport [T-Comm: Telecommunications and
transport], 2013, No. 4.
9. Leonov A.V., Naniy O.E., Treshchikov V.N. Sovershenstvovanie formatov modulyatsii v opticheskikh
sistemakh svyazi DWDM [Improving modulation formats in DWDM optical communication systems],
Pervaya milya [First Mile], 2019, No. 1, pp. 30-37.
10. Proskurin A.A., Bliznyuk V.I., Ivkin V.B. Realizatsionnye aspekty razrabotki otechestvennogo
transpondera kogerentnykh volokonno-opticheskikh sistem peredachi so skorost'yu 100 Gbit/s [Implementation
aspects of the development of a domestic transponder for coherent fiber-optic transmission
systems with a speed of 100 Gbit/s], Izvestiya Tul'skogo Gosudarstvennogo Universiteta. Tekhnicheskie
nauki [Bulletin of the Tula State University. Technical sciences], 2020, No. 2, pp. 64-69.
11. Gurkin N.V., Treshchikov V.N., Novikov A.G., Naniy O.E. Rossiyskoe DWDM oborudovanie s
kanal'noy skorost'yu 100 Gbit/s [Russian DWDM equipment with a channel rate of 100 Gbit/s],
T-COMM: Telekommunikatsii i transport [T-COMM: Telecommunications and transport], 2012, Vol.
6, No. 4, pp. 65-67.
12. Juliano S., Martins F., Prata A., Lopes S. High Performance Microwave Point-to-Point Link for 5G
Backhaul with Flexible Spectrum Aggregation, 2015 IEEE MTT-S International Microwave Symposium,
17–22 May 2015. Phoenix, USA, 2015.
13. Root D.E. A New Paradigm for Measurement, Modeling, and Simulation of Nonlinear Microwave and
RF Components, Berkeley Wireless Research Center. Presentation. Agilent Technologies, Apr. 17,
2009. Available at: http://www.learningace.com/doc/3086134/0867637b6f4bb9900348a7da473cf467/
bwrc_root_april09
14. Root D.E., Horn J., Betts L., Gillease C., Verspecht J. X–parameters: The new paradigm for measurement,
modeling, and design of nonlinear RF and microwave components, Microwave Engineering Europe,
December 2008, pp. 16-21.
15. Vye D. Fundamentally Changing Nonlinear Microwave Design, Microwave Journal, 2010, Vol. 53,
No. 3, pp. 22-38.
16. Nikolaev E. X–parametry effektivnyy instrument dlya analiza elektricheskikh tsepey [X-parameters
are an effective tool for analyzing electrical circuits], Elektronika. Nauka. Tekhnologiya. Biznes
[Electronics. Science. Technology. Business], 2012, No. 1 (00115), pp. 7679.
17. Sayapin V.Yu. Opisanie nelineynykh tsepey na osnove X–parametrov i metodika ikh izmereniya [Description
of nonlinear circuits based on X-parameters and methods of their measurement], Doklady
TUSURa [Reports of TUSUR], 2012, No. 2 (26), Part 1, pp. 83-86.
18. Scott J., Hoy M. Group–Delay Measurement of Frequency–Converting Devices using a Comb Generator,
IEEE Transactions on Instrumentation and Measurement, 2010, Vol. 59, Issue 11, pp. 3012-3017.
19. Pavlov L.A., Pervova N.V. Struktury i algoritmy obrabotki dannykh: uchebnik [Structures and algorithms
of data processing: textbook]. 2nd ed. Saint Petersburg: Lan', 2020, 256 p.
20. Bazhenov V.G., Bogdan G.A., Kravchenko M.V. Tsifrovaya sistema izmereniya fazovykh sdvigov
radioimpul'snykh signalov [Digital system for measuring phase shifts of radio pulse signals],
Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal [International research journal], 2016, No. 4, pp. 36-38.
21. Naik R., Nadaf R. Sine-Cosine Computation Using CORDIC Algorithm, International Journal of Advanced
Research in Computer and Communication Engineering, 2015, Vol. 4, Issue 9.
22. Jack Volder. The CORDIC computing technique, In Papers presented at the the March 3-5, 1959,
western joint computer conference (IRE-AIEE-ACM '59 (Western)). Association for Computing Machinery,
New York, NY, USA, 1959, pp. 257-261. Available at: https://doi.org/10.1145/
1457838.1457886.
23. Garrido M., Källström P., Kumm M. and Gustafsson O. CORDIC II: A New Improved CORDIC Algorithm,
in IEEE Transactions on Circuits and Systems II: Express Briefs, Feb. 2016, Vol. 63, No. 2,
pp. 186-190. DOI: 10.1109/TCSII.2015.2483422.
24. Ifeachor E.C., Jervis B.W. Digital Signal Processing: A Practical Approach. 2nd ed. Prentice Hall,
2001, 933 p. ISBN 9785845907103.
25. Matthew P.D. CIC Filter Introduction. Available at: https://www.dspguru.com/files/cic.pdf (accessed
20 May 2024).
26. Cyclone V Device Overview, Intel: official site, 2018. Available at: https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf (accessed 12 April 2024).
27. ADC-SoC User Manual, Intel: official site, 2016. Available at: https://www.intel.com/content/dam/
altera-www/global/en_US/portal/dsn/42/docus-dsnbk-42-2108361005542-adc-soc-user-manualdsn.
pdf (accessed 06 May 2024).
28. Jaymin P., Yash S., Lili H. Design between AXI Lite and AHB Bus Protocol, Journal of Physics: Conference
Series, 2021, Vol. 1993.
29. Babenko A.A., Gnoevoy A.V., Korotkov K.S., Levchenko A.S., Frolov D.R. Patent № 2618046
Rossiyskaya Federatsiya, MPK G 01 R 25/00. Sposob izmereniya raznosti faz i otnosheniya urovney
dvukh garmonicheskikh signalov: № 2016109376: zayavl. 15.03.2016: opubl. 10.05.2017, Byul. No. 13; zayavitel' i patentoobladatel' Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe
uchrezhdenie vysshego obrazovaniya "Kubanskiy gosudarstvennyy universitet" [Patent No. 2618046
Russian Federation, IPC G 01 R 25/00. Method for measuring the phase difference and the level ratio
of two harmonic signals: No. 2016109376: decl. 15.03.2016: publ. 10.05.2017, Bull. No. 13; applicant
and patent holder Federal State Budgetary Educational Institution of Higher Education "Kuban State
University"], 12 p.
30. Korotkov K.S., Bol'shov A.V., Gaydenko I.V., Pozhidaev R.B., Serdyukov V.V. Svidetel'stvo o
gosudarstvennoy registratsii programmy dlya EVM №2022660602 Rossiyskaya Federatsiya.
Programma dlya opredeleniya kompleksnogo koeffitsienta peredachi i otrazheniya SVCh-smesiteley
metodom summy i raznosti: №2022619520: zayavl. 26.05.2022: opubl. 07.06.2022; pravoobladatel'
Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya
«Kubanskiy gosudarstvennyy universitet» (FGBOU VO «KubGU»). Zaregistrirovano v Reestre
programm dlya EVM [Certificate of state registration of computer program No. 2022660602 Russian
Federation. Program for determining the complex transmission and reflection coefficient of microwave
mixers using the sum and difference method: No. 2022619520: declared 05/26/2022: published
06/07/2022; copyright holder Federal State Budgetary Educational Institution of Higher Education
"Kuban State University" (FGBOU VO "KubSU"). Registered in the Register of Computer].