ВЛИЯНИЕ ПОВЕРХНОСТНЫХ СОСТОЯНИЙ НА ЭЛЕКТРИЧЕСКОЕ ПОЛЕ N-P ПЕРЕХОДА
Аннотация
Структура и свойства полупроводниковых приборов в значительной степени зависят от
распределения внутреннего электрического поля, которое создается распределением ионизован-
ных примесей. Одним из способов контролируемого введения доноров, акцепторов является их
диффузия в объем полупроводника. Существование поверхностных электронных состояний в зоне
запрещенных энергий неконтролируемым образом влияет на распределение электрического поля в
поверхностной области. Целью исследования является анализ влияния поверхностных состояний
на распределение электрического поля в диффузионном n-p переходе. Задачи исследования.
1 – Разработать алгоритм численного решения уравнения Пуассона, учитывающий общую элек-
тронейтральность n-p перехода и плотность поверхностных состояний в эмиттере. 2 – Рассчи-
тать численно распределения электрического потенциала, напряжённости электрического поля,
концентрации электронов и дырок в диффузионном n-p переходе. 3 – Проанализировать влияние
поверхностных состояний на изменение внутреннего электрического поля и скорость поверхност-
ной рекомбинации неравновесных носителей заряда. В результате численно промоделировано
влияние поверхностных состояний на распределение электрического поля в диффузионном
n-p переходе в кремнии. Модель основана на численном решении уравнения Пуассона с граничными
условиями, включающими условие общей электронейтральности образца. Показано, что плот-
ность электронных состояний на поверхности эмиттера создает узкую область распределения
плотности электрического заряда. Максимальное значение модуля напряжённости электрическо-
го поля в этой области превышает аналогичное значение в n-p переходе в три раза и более. На-
пряжённость электрического поля, обусловленная поверхностным зарядом, направляет неоснов-
ные носители заряда к поверхности, что повышает эффективную скорость их рекомбинации.
Уменьшение плотности поверхностного заряда или изменение его знака является одной из задач
технологии полупроводниковых приборов.
Литература
PIN fotodiodov po vol't-ampernym kharakteristikam [Method of non-destructive testing of the reliability
of PIN photodiodes based on current-voltage characteristics], Prikladnaya fizika [Applied Physics],
2010, No. 2, pp. 67-73.
2. Artamonov A.V., Astakhov V.P., Karpov V.V., Chishko V.F., Levshin V.L. Raschet fotoelektricheskikh
kharakteristik fotodiodnykh matrichnykh fotopriemnykh ustroystv spektral'nogo diapazona
2,0–3,5 mkm na osnove arsenida indiya [Calculation of photoelectric characteristics of photodiode
matrix photodetector devices of the spectral range 2.0–3.5 microns based on indium arsenide],
Prikladnaya fizika [Applied Physics], 2011, No. 6, pp. 145-148.
3. Tregulov V.V., Litvinov V.G., Ermachikhin A.V. Mekhanizmy tokoprokhozhdeniya v
poluprovodnikovoy strukture fotoelektricheskogo preobrazovatelya s n+−p-perekhodom i
antiotrazhayushchey plenkoy poristogo kremniya, sformirovannoy metodom okrashivayushchego
travleniya [Mechanisms of current flow in the semiconductor structure of a photoelectric converter
with an n+−p junction and an anti-reflection film of porous silicon formed by color etching], Zhurnal
tekhnicheskoy fiziki [Journal of Technical Physics], 2019, Vol. 89, V. 5, pp. 737-743.
4. Mohammed A. P-N Junction, Technical Report, 2020, 19 p.
5. Pulfrey D.L. Understanding Modern Transistors and Diodes. Cambridge: Cambridge University Press,
2010, 355 p.
6. Bogatov N.M., Korneev A.I., Matveyakin M.P., Rodomanov R.R. Issledovanie vliyaniya
neravnovesnogo zaryada granitsy SiO2-Si na dinamiku spektral'noy chuvstviitel'nosti solnechnykh
elementov s submikronnym p-n-perekhodom [Study of the influence of the nonequilibrium charge of
the SiO2-Si boundary on the dynamics of the spectral sensitivity of solar cells with a submicron p-n
junction], Izvestiya vysshikh uchebnykh zavedeniy Severo-Kavkazskiy region. Tekhnicheskie nauki
[News of higher educational institutions of the North Caucasus region. Technical science], 2006,
No. 2, pp. 52-54.
7. Bogatov N.M., Matveyakin M.P., Pershin N.V., Rodomanov R.R. Opredelenie vremeni zakhvata
neravnovesnogo poverkhnostnogo zaryada v poluprovodnikovykh strukturakh po spadu toka
korotkogo zamykaniya [Determination of the time of capture of a nonequilibrium surface charge in
semiconductor structures by the decline in short-circuit current], Izvestiya vysshikh uchebnykh
zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki [News of higher educational institutions.
North Caucasus region. Natural Sciences], 2008, No. 6, pp. 39-41.
8. Simashkevich A.V., Sherban D.A., Bruk L.I., Fedorov V.M., Koval' A., Usatyy Yu.V. Osobennosti
mekhanizma prokhozhdeniya toka cherez izotipnuyu strukturu ITO/nSI [Features of the mechanism of
current passage through the isotype ITO/nSI structure], Elektronnaya obrabotka materialov [Electronic
processing of materials], 2010, No. 1, pp. 44-47.
9. Deng S., Xu R., Li M., Li L., Wang Z.L., Zhang Q. Influences of surface charges and gap width between
p-type and n-type semiconductors on charge pumping, Nano Energy, 2020, Vol. 78, 105287, pp. 1-7.
10. Mel'nik N.N., Tregulov V.V., Skoptsova G.N., Ivanov A I., Kostsov D.S. Svoystva p-n-perekhoda,
sformirovannogo v plenke poristogo kremniya, vyrashchennoy metall-stimulirovannym travleniem
[Properties of a p-n junction formed in a porous silicon film grown by metal-stimulated etching],
Kratkie soobshcheniya po fizike FIAN [Brief communications on physics of the Lebedev Physical Institute],
2022, No. 9, pp. 3-10.
11. Papež V., Hájek J., Kojecký B. Influence of surface states on the reverse and noise properties of silicon
power diodes, IET Circuits Devices Syst., 2014, Vol. 8, Issue 3, pp. 213-220.
12. Danilkin E.A., Starchenko A.V., Karataeva E.A., Yumin K.V., Del' I.V., Smiyan N.S., Leshchinskiy D.V.
Parallel'naya realizatsiya nekotorykh iteratsionnykh metodov dlya resheniya sistemy lineynykh
algebraicheskikh uravneniy v mezomasshtabnoy meteorologicheskoy modeli atmosfernogo
pogranichnogo sloya [Parallel implementation of some iterative methods for solving a system of linear
algebraic equations in a mesoscale meteorological model of the atmospheric boundary layer],
Desyataya Sibirskaya konferentsiya po parallel'nym i vysokoproizvoditel'nym vychisleniyam: Sb.
statey. Tomsk, 5–7 oktyabrya 2021 g. [Tenth Siberian Conference on Parallel and High-Performance
Computing: Proc. articles. Tomsk, October 5–7, 2021]. Tomsk: Izd-vo NTL, 2021, pp. 18-28.
13. Kenzhebek E.G., Imankulov T.S., Akhmed-Zaki D.Zh. Parallel'nyy algoritm resheniya uravneniya
Puassona na osnove tekhnologii MPI+OPENMP [Parallel algorithm for solving the Poisson equation
based on MPI+OPENMP technology], Problemy optimizatsii slozhnykh sistem: Mater. XIV
Mezhdunarodnoy Aziatskoy shkoly-seminara. Almaty, 20–31 iyulya 2018 g. [Problems of optimization
of complex systems: Proceedings of the XIV International Asian School-Seminar. Almaty, July 20–31,
2018]. Almaty: Institut informatsionnykh i vychislitel'nykh tekhnologiy MON RK, 2018, pp. 307-315.
14. Mingalev O.V., Mel'nik M.N. Chislennoe reshenie kraevykh zadach dlya uravneniya Puassona
metodom bystrogo preobrazovaniya Fur'e s ispol'zovaniem parallel'nykh vychisleniy [Numerical solution
of boundary value problems for the Poisson equation by the fast Fourier transform method using
parallel computing], Tr. Kol'skogo nauchnogo tsentra RAN [Proceedings of the Kola Scientific Center
of the Russian Academy of Sciences], 2018, Vol. 9, V. 5, pp. 165-182.
15. Merer Kh. Diffuziya v tverdykh telakh [Diffusion in solids]. Dolgoprudnyy: Izdatel'skiy dom
«Intellekt», 2011, 536 p.
16. Shalimova K.V. Fizika poluprovodnikov [Physics of semiconductors]. Moscow: Lan', 2010, 400 p.
17. Bogatov N.M. Raspredelenie zaryada v rezkom nesimmetrichnom ravnovesnom n-p-perekhode
[Charge distribution in a sharp asymmetric equilibrium n-p junction], Ekologicheskiy vestnik
nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological bulletin of scientific
centers of the Black Sea Economic Cooperation], 2016, No. 3, pp. 12-17.
18. Yafarov R.K. Vliyanie vstroennogo poverkhnostnogo potentsiala na VAKh kremnievykh MDP
struktur [The influence of the built-in surface potential on the current-voltage characteristics of silicon
MIS structures], Mikroelektronika [Microelectronics], 2019, Vol. 48, No. 2, pp. 155-159.
19. Aleksandrov O.V. Vliyanie intensivnosti ioniziruyushchego oblucheniya na otklik MOP-struktur [Influence
of the intensity of ionizing radiation on the response of MOS structures], Fizika i tekhnika
poluprovodnikov [Physics and semiconductor technology], 2021, Vol. 55, V. 2, pp. 152-158.
20. Yurov V.M., Zhanabergenov T., Guchenko S.A. Tolshchina poverkhnostnogo sloya tipichnykh
poluprovodnikov [Thickness of the surface layer of typical semiconductors], The scientific heritage
[The scientific heritage], 2020, No. 43, pp. 20-23.