ВВЕДЕНИЕ В ТЕОРИЮ ОПЕРАТОРОВ МЕЛЛИНА И НЕКОТОРЫЕ ЕЕ ПРИЛОЖЕНИЯ В ОБРАБОТКЕ СИГНАЛОВ

  • А. М. Макаров Пятигорский государственный университет
  • А.С. Ермаков Пятигорский государственный университет
Ключевые слова: Преобразования Меллина, теория операторов, цифровая обработка сигналов

Аннотация

В развитие теории и ее приложений для обработки процессов, несущих информацию,
важную роль сыграли интегральные преобразования. Математически интегральные пре-
образования осуществляют отображение пространства исходной переменной в новое
пространство новой переменной, то есть осуществляют отображение множеств эле-
ментов пространства типа «много в одно». В теории сигналов широкое применение полу-
чило интегральное преобразование Фурье не только как представление сигналов, но и в их
спектральном анализе. Интегральное преобразование Гильберта послужило в качестве
развитие теории цифрового представления широкополосных сигналов. В работе рассмат-
риваются вопросы теории интегрального преобразования Меллина не так известного, как
предыдущие, для его использования при обработке сигналов, помех и некоторых задач,
имеющих прикладной характер в теории сигналов. Приводится теория спектрально-
корреляционного анализа случайных процессов в базисе интегрального преобразования Мел-
лина. В частности, на ее основе доказана теорема (аналог теоремы Винера-Хинчина для
преобразования Фурье) о связи корреляционной функции шума в базисе преобразования Фу-
рье со спектральной плотностью мощности шума в базисе преобразования Меллина. Эти
результаты могу быть положены в основу синтеза алгоритмов обработки сигналов на
фоне помех в базисе интегрального преобразования Меллина. На его основе разработана
функциональная структура обнаружителя сигналов на фоне гауссовых шумов с неизвест-
ными априори корреляционной функцией и длительностью сигнала. Следует отметить,
что в работе авторов рассмотрены довольно сложные математические выкладки. Начи-
нающим знакомится с интегральным преобразованием Меллина рекомендуем в первую оче-
редь изучить учебное пособие.

Литература

1. Klimenko P.P., Kornienko V.T., Makarov A.M., Gelozhe Yu.A., Maksimov A.V. Prikladnye
metody tsifrovoy obrabotki signalov v radiotekhnicheskikh sistemakh [Applied methods of
digital signal processing in radio systems]. Rostov-on-Don; Taganrog, 2021.
2. Dzhrbashyan M.M. Integral'nye preobrazovaniya i predstavlenie funktsiy v kompleksnoy
oblasti [Integral transformations and representation of functions in the complex domain]. Moscow:
Izd-vo «Nauka». Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1965.
3. Frenks L. Teoriya signalov. N'yu-Dzhersi, 1969 g. [Signal theory. New Jersey, 1969]: transl.
from english, ed. by D.E. Vakmana. Moscow: Sov. radio, 1974, 344 p.
4. Fritz Jberhettinger Tabels of Mellin Transforms. Springer-verlag. Berlin, Heidelberg, New
York, 1974.
5. Krasnov M.L., Kiselev A.I., Makarenko G.I. Interral'nye uravnenii: Zadachi i primery s
podrobnymi resheniyami: ucheb. posobie [Interactive equations: Problems and examples with
detailed solutions: textbook]. 3rd ed. Moscow: URSS, 2003, 192 p.
6. Beytmen G., Erdeyi A. Tablitsy integral'nykh preobrazovaniy. T. 1. Preobrazovanie Fur'e,
Laplasa, Mellina [Tables of integral transformations. Vol. 1. Fourier, Laplace, Mellin
transform]. Moscow: Izd-vo «Nauka», 1965.
7. Bertrand J., Bertrand P., Ovarlez j. The Mellin Transform. The Transformsand Applications
Handbook. Second ed. Ed. Alexander D. Poularikas. Boca Raton: CRCPress LLC, 2000.
8. Shapiro D.A. Uravneniya v chastnykh proizvodnykh. Spetsial'nye funktsii. Asimptotiki.
Konspekt lektsiy po matematicheskim metodam fiziki [Partial differential equations. Special
functions. Asymptotics. Lecture notes on mathematical methods of physics]. Novosibirsk:
Novosibirskiy gosudarstvennyy universitet, 2004, 122 p.
9. Philip E. Zwiche. A new implementation of the radar classification of ships, IEEE Trans. of
Pattern analysis and machine Intellecenzy, March 1983, Vol. PAMI-5, No. 2.
10. Sheng Y., Arsenault H. Experiments on pattern recognition using invariant Fourier-Mellin
descriptors, J. Opt. Soc. Am., 1986, No. 3 (6), pp. 885-887.
11. Reddy S., Chatterji B. Tekhnika na osnove FFT dlya preobrazovaniya, vrashcheniya i
masshtabirovaniya invariantnogo izobrazheniya. Registratsiya [FFT based technique for invariant
image transformation, rotation and scaling. Registration], IEEE Trans. ob obrabotke
izobrazheniy [EEE Trans. about image processing], 1996, Vol. 5, pp. 126-127.
12. Zalubas E.J., Williams W.J. Discrete scale transform for signal analysis, Proceedings of the
20th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
'95), May 1995, Detroit, Mich, USA 3, pp. 1557-1560.
13. Makarov A.M. Vzaimosvyaz' avtokorrelyatsionnoy funktsii statsionarnykh sluchaynykh
protsessov v bazise preobrazovaniya Fur'e so spektral'noy plotnost'yu moshchnosti v bazise
preobrazovaniya Mellina (analog teoremy Vinera-Khinchina) [Relationship between the autocorrelation
function of stationary random processes in the basis of the Fourier transform and
the power spectral density in the basis of the Mellin transform (analogue of the Wiener-
Khinchin theorem)], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2014, No. 11 (160), pp. 52.
14. Makarov A.M., Ermakov A.S. Optimal'nyy soglasovannyy fil'tr dlya obnaruzheniya signala na
fone shuma s neizvestnoy korrelyatsionnoy funktsiey [Optimal matched filter for detecting a
signal against a background of noise with an unknown correlation function], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 11 (172), pp. 42-55.
15. Makarov A.M., Ermakov A.S. Method development for solving Fredholm integral equations of
the second kind based on the Mellin multiplicative convolution in the class of trigonometriclogarithmic
functions, Conference Proceedings - 2021 Radiation and Scattering of Electromagnetic
Waves, RSEMW 2021, 2021, pp. 71-74.
16. Makarov A.M., Postovalov S.S. Vvedenie v teoriyu operatorov, porozhdaemykh integral'nym
preobrazovaniem Mellina [Introduction to the theory of operators generated by the Mellin integral
transformation], Komp'yuternye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii
"KomTekh-2019": Sb. materialov Vserossiyskoy nauchno-tekhnicheskoy konferentsii s
mezhdunarodnym uchastiem [Computer and information technologies in science, engineering and
management "ComTech-2019": Collection of materials of the All-Russian scientific and technical
conference with international participation]. Rostov-on-Don – Taganrog, 2019, pp. 34-39.
17. De Sena A, Rocchesso D. A fast Mellin transform with applications in DAFx. Proceedings of
the 7th International Conference on Digital Audio Effects (DAFx '04), October 2004, Napoli,
Italy, pp. 65-69.
18. Makarov A.M., Postovalov S.S. Matematicheskaya model' trigonometricheski-logarifmicheskikh
bazisnykh funktsiy preobrazovaniya Mellina i ikh tsifrovaya realizatsiya [Mathematical model of
trigonometric-logarithmic basis functions of the Mellin transform and their digital implementation],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2018, No. 3
(197), p. 22-33.
19. Makarov A.M., Postovalov S.S., Ermakov A.S. Application of integral transforms in algorithms
for detecting signals against a background of noise under priori uncertainty using the Mellin's
transforms, 2020 International Multi-Conference on Industrial Engineering and Modern
Technologies, FarEastCon 2020, 2020, pp. 927137.
20. Postovalov S.S., Makarov A.M. Rezul'taty issledovaniya tochnosti predstavleniya parametricheski
periodicheskikh nestatsionarnykh funktsiy yadra integral'nogo preobrazovaniya Mellina [Results of
a study of the accuracy of the representation of parametrically periodic non-stationary functions of
the kernel of the Mellin integral transform], Universitetskie chteniya – 2020: Mater. nauchnometodicheskikh
chteniy PGU [University readings - 2020: Materials of scientific and methodological
readings of PSU]. Pyatigorsk, 2020, pp. 22-46.
Опубликован
2024-01-05
Выпуск
Раздел
РАЗДЕЛ I. АЛГОРИТМЫ ОБРАБОТКИ ИНФОРМАЦИИ