ОСНОВЫ ПРОЕКТИРОВАНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ АНАЛОГОВЫХ МИКРОСХЕМ НА ШИКОРОЗОННЫХ ПОЛУПРОВОДНИКАХ (ОБЗОР)
Аннотация
Представлен аналитический обзор перспективных технологических процессов для
высокотемпературных аналоговых микросхем, востребованных в космическом, авиацион-
ном и автомобильном приборостроении, нефтехимической промышленности, электроэнер-
гетики, электроники военного назначения, медицине и др. Рассмотрены проблемы проек-
тирования микросхем данного класса на широкозонных полупроводниках (карбид-кремний
(SiC), нитрид-галлий (GaN), арсенид-галлий (GaAs)), обеспечивающих широкий диапазон
рабочих температур (-200°С…+500°С). В настоящее время «слаботочная» схемотехника
на SiC, GaN, GaAs шикорозонных полупроводниках для работы при высоких температурах
крайне не развита, что не позволяет проектировать аналоговые изделия нового поколения
в интересах российских предприятий. Сегодня многие актуальные вопросы SiC, GaN, GaAs
высокотемпературной схемотехники и динамики не решены. Необходимы исследования
конструктивно-технологических решений, а также отвода тепла. В этой связи в статье
проведен анализ проблем проектирования микросхем данных классов. При этом следует
учитывать ограничения технологических процессов, которые, во многих случаях, позволя-
ют создавать только однотипные активные элементы, что затрудняет построение мик-
росхем. Актуальность вышеназванных исследований связана с проблемами импортозаме-
щения в условиях санкций, когда закупка электронной компонентной базы ответственного
применения у зарубежных фирм становится недоступной. Нужны российские рекоменда-
ции по разработки правил проектирования аналоговых интерфейсных микросхем (операци-
онных и мультидифференциальных операционных усилителей, трансимпедансных и заря-
дочувствительных усилителей, компенсационных стабилизаторов напряжения и буферных
усилителей, токовых конвейеров и т.п.) под задачи обработки сигналов датчиков физиче-
ских величин в диапазоне высоких температур (+150°С … +500°С).
Литература
creating high-temperature computing systems], Programmnye produkty i sistemy [Software
products and systems], 2015, No. 4 (112), pp. 62-69.
2. Prokopenko N.N., Bugakova A.V., Chumakov V.E. Osnovnye napravleniya razvitiya
skhemotekhniki transimpedansnykh i operatsionnykh usiliteley s uchetom novykh i
perspektivnykh tekhnologicheskikh protsessov [The main directions of development of circuitry
for transimpedance and operational amplifiers, taking into account new and promising technological
processes], Radioelektronnaya tekhnika: mezhvuzovskiy sbornik nauchnykh trudov
[Radioelectronic engineering: interuniversity collection of scientific papers], ed. by V.A.
Sergeeva. Ul'yanovsk: UlGTU, 2022, pp. 4-16.
3. Salem J.M., Pour F.L., Sam Ha D. A High-Temperature Model for GaN-HEMT Transistors
and its Application to Resistive Mixer Design, Transactions on Circuits and Systems I: Regular
Papers. IEEE, 2021, Vol. 68, No. 2, pp. 581-591.
4. Neudeck P.G., Garverick S.L., Spry D.J., Chen L.Y., Beheim G.M., Krasowski M.J.,
Mehregany M. Extreme temperature 6H‐SiC JFET integrated circuit technology, Physica Status
Solidi (a), 2009, Vol. 206, No. 10, pp. 2329-2345.
5. Ehteshamuddin M. Design of a High Temperature GaN-Based Variable Gain Amplifier for
Downhole Communications. Available at: https://vtechworks.lib.vt.edu/bitstream/ handle/
10919/749 58/Ehteshamuddin_M_T_2017.pdf?isAllowed=y&sequence=1 (accessed 01
August 2023).
6. Ehteshamuddin M., Salem J.M., Ha D.S. A high temperature variable gain amplifier based on
GaN HEMT devices for downhole communications, International Symposium on Circuits and
Systems. IEEE, 2017, pp. 1-4.
7. Alekseev A., Petrov S. Sozdanie moshchnykh SVCH-tranzistorov i mikroskhem na osnove
GaN-otechestvennyy kompleks tekhnologicheskogo oborudovaniya [Creation of high-power
microwave transistors and microcircuits based on GaN-domestic complex of technological
equipment], Elektronika: Nauka, tekhnologiya, biznes [Electronics: Science, technology, business],
2016, No. 5, pp. 48-53.
8. Kargarrazi S., Yalamarthy A.S., Satterthwaite P.F., Blankenberg S.W., Chapin C., Senesky D.G.
Stable Operation of AlGaN/GaN HEMTs for 25 h at 400°C in air, Journal of the Electron Devices
Society. IEEE, 2019, Vol. 7, pp. 931-935.
9. Publikatsii v oblasti primeneniya vysokotemperaturnykh mikroskhem [Publications in the field
of application of high-temperature microcircuits]. Available at: https://disk.yandex.ru/i/
2OztJ_c6Fq1UHg (accessed 21 August 2023).
10. Bahl I.J. Control Components Using Si, GaAs, and GaN Technologies. Artech House, 2014,
325 p.
11. Hassan A., Ali M., Trigui A., Savaria Y., Sawan M. A GaN-based wireless monitoring system
for high-temperature applications, Sensors, 2019, Vol. 19, No. 8, pp. 1785.
12. Publikatsii, otrazhayushchie obshchie svoystva GaAs, GaN, SiC i osobennosti tekhprotsessov [Publications
reflecting the general properties of GaAs, GaN, SiC and features of technical processes].
Available at: https://disk.yandex.ru/i/2mNo3yo9eqiWhQ (accessed 21 August 2023).
13. Publikatsii po vysokotemperaturnym komp'yuternym modelyam tranzistorov [Publications on
high-temperature computer models of transistors]. Available at: https://disk.yandex.ru/i/
x50jo_RvnMtHHQ (accessed 21 August 2023).
14. Vitanov S., Palankovski V., Maroldt S., Quay R. High-temperature modeling of AlGaN/GaN
HEMTs, Solid-State Electronics, 2010, Vol. 54, No. 10, pp. 1105-1112.
15. Publikatsii po vysokotemperaturnoy elektronike na GaN [Publications on high-temperature
electronics on GaN]. Available at: https://disk.yandex.ru/d/YTYyxjPoFFImKw (accessed
21 August 2023).
16. Publikatsii po vysokotemperaturnoy elektronike na GaAs [Publications on high-temperature
electronics based on GaAs]. Available at: https://disk.yandex.ru/i/OM5WL1jNfIGFcg (accessed
21 August 2023).
17. Soong C.-W., Patil A.C., Garverick S.L., Fu X., Mehregany M. 550°C Integrated Logic Circuits
using 6H-SiC JFETs, Electron Device Letters. IEEE, 2012, Vol. 33, No. 10, pp. 1369-1371.
18. Spry D.J., Neudeck P.G., Chang C. Experimental study on mitigation of lifetime-limiting dielectric
cracking in extreme temperature 4H-SiC JFET Integrated Circuits, Materials Science
Forum. Trans Tech Publications Ltd, 2020, Vol. 1004, pp. 1148-1155.
19. Stum Z., Tilak V., Losee P.A., Andarawis E.A., Chen C.P. 300° C Silicon Carbide Integrated
Circuits, Materials Science Forum, 2011, Vol. 679-680, pp. 730-733.
20. Brown D.M. Silicon Carbide MOSFET Integrated Circuit Technology, Physica Status Solidi
(A), 1997, Vol. 162, pp. 459-479.
21. Patil A.C., Fu X.A., Anupongongarch C., Mehregany M., Garverick S.L. 6H-SiC JFETs for
450 ◦C Differential Sensing Applications, Journal of Microelectromechanical Systems, 2009,
Vol. 18, No. 4, pp. 950-961.
22. Khanna V.K. Extreme-temperature and harsh-environment electronics: physics, technology
and applications, IOP Publishing, 2023. DOI: 10.1088/978-0-7503-5072-3.
23. Publikatsii po vysokotemperaturnoy elektronike na SiC [Publications on High Temperature
Electronics on SiC]. Available at: https://disk.yandex.ru/i/zW4DgGBx9B9aQA (accessed
21 August 2023).
24. Rahman A., Roy S., Murphree R., Kotecha R., Addington K., Abbasi A., Mantooth H.A., Francis
A.M., Holmes J., Di J. High-temperature SiC CMOS comparator and op-amp for protection
circuits in voltage regulators and switch-mode converters, Journal of Emerging and Selected
Topics in Power Electronics. IEEE. 2016, Vol. 4, No. 3, pp. 935-945.
25. Patil A.C., Fu X.A., Mehregany M., Garverick S.L. Fully-monolithic, 600°C differential amplifiers
in 6H-SiC JFET IC technology, Proceedings of the CICC. IEEE, 2009, pp. 73-76.
26. Neudeck P.G., Garverick S.L., Spry D.J., Chen L.Y., Beheim G.M., Krasowski M.J.,
Mehregany M. Extreme temperature 6H-SiC JFET integrated circuit technology, Physica Status
Solidi (A), 2009, Vol. 206, No. 10, pp. 2329-2345.
27. Publikatsii po problemam vysokotemperaturnoy analogovoy skhemotekhniki na GaN, SiC,
GaAs [Publications on the problems of high-temperature analog circuitry based on GaN, SiC,
GaAs]. Available at: https://disk.yandex.ru/i/R0kIX06Fmpw6Ig (accessed 21 August 2023).
28. Vikulov I. Monolitnye integral'nye skhemy SVCh tekhnologicheskaya osnova AFAR [Microwave
monolithic integrated circuits are the technological basis of AFAR], Elektronika: nauka,
tekhnologiya, biznes [Electronics: science, technology, business], 2012, No. 7, pp. 060-073.
29. Publikatsii po seriynym vysokotemperaturnym mikroskhemam [Publications on serial hightemperature
microcircuits]. Available at: https://disk.yandex.ru/i/eacY7GF4CDRtgg (accessed
21 August 2023).
30. Publikatsii v oblasti SVCh izdeliy na GaN [Publications in the field of microwave products
based on GaN]. Available at: https://disk.yandex.ru/i/inwYk5hcV1jjpg (accessed 21 August
2023).
31. Lee H., Smet V., Tummala R. A review of SiC power module packaging technologies: Challenges,
advances, and emerging issues, Journal of Emerging and Selected Topics in Power
Electronics. IEEE, 2019, Vol. 8, No. 1, pp. 239-255.
32. Publikatsii v oblasti silovoy vysokotemperaturnoy elektroniki [Publications in the field of
power high temperature electronics]. Available at: https://disk.yandex.ru/d/SB1_FPzrpFJP9A
(accessed 21 August 2023).
33. Publikatsii po problemam konstruktivno-tekhnologicheskikh resheniy vysokotemperaturnykh
mikroskhem i otvoda tepla [Publications on the problems of constructive and technological solutions
for high-temperature microcircuits and heat removal]. Available at:
https://disk.yandex.ru/i/9w7ZTgNQj13jZQ (accessed 21 August 2023).
34. Lee H., Smet V., Tummala R. A review of SiC power module packaging technologies: Challenges,
advances, and emerging issues, Journal of Emerging and Selected Topics in Power
Electronics. IEEE, 2019, Vol. 8, No. 1, pp. 239-255.
35. Vysokotemperaturnaya i almaznaya elektronika, primenenie, osobennosti i konstruktsii [High
temperature and diamond electronics, application, features and designs]. Available at:
https://intellect.icu/vysokotemperaturnaya-i-almaznaya-elektronika-primenenie-osobennosti-ikonstruktsii-
8496 (accessed 01 August 2023).
36. Watson J., Castro G. A review of high-temperature electronics technology and applications,
Journal of Materials Science: Materials in Electronics, 2015, Vol. 26, pp. 9226-9235.
37. Svoystva i kharakteristiki SiC [Properties and characteristics of SiC]. Available at:
https://www.prosofLru/products/types/poluprovodnikovye-materialy/362515/ 362988/ (accessed
01 August 2023).
38. Wang J., Zhu Z., Liu S., Ding R. A low-noise programmable gain amplifier with fully balanced
differential difference amplifier and class-AB output stage, Microelectronics Journal, 2017,
Vol. 64, pp. 86-91.
39. Royo G., Sanchez-Azqueta C., Martinez-Perez A.D., Aldea C., Celma S. Fully-differential
transimpedance amplifier for reliable wireless communications, Microelectronics Reliability,
2018, Vol. 83, pp. 25-28.
40. Ku Y.-T., Hwang Y.-S., Chen J.-J., Shih C.-C., Cheng D. Anew current-mode Wheatstone
bridge based on a new fully differential operational transresistance amplifier, AEU - International
Journal of Electronics and Communications, 2019, Vol. 101, pp. 85-92.
41. Sabry M.N., Nashaat I., Omran H. Automated design and optimization flow for fullydifferential
switched capacitor amplifiers using recycling folded cascode ОТА, Microelectronics
Journal, 2020, Vol. 101, pp. 104814. DOI: 10.1016/j.mejo.2020.104814.
42. Beev N., Kiviranta M. Fully differential cryogenic transistor amplifier, Cryogenics, 2013, Vol.
57, pp. 129-133. DOI: 10.1016/j.cryogenics.2013.06.004.
43. Kim K., Yoo C. Time-Domain Operational Amplifier with Voltage-Controlled Oscillator and
Its Application to Active-RC Analog Filter, Transactions on Circuits and Systems II: Express
Briefs. IEEE, 2020, Vol. 67, No. 3, pp. 415-419.
44. Gebreyohannes F. T., Loueratand M., Aboushady H. Design of a 4th-Order Feed-Forward-
Compensated Operational Amplifierfor Multi-GHz Sampling Frequency Continuous-Time
Bandpass Sigma-Delta Modulators, International Symposium on Circuits and Systems
(ISCAS). IEEE, 2019, pp. 1-5.
45. Flenrion W.S., Kruczkowski P.J., Sen S. Trans-impedance amplifier, US Patent 6.323.734, Feb.
29, 2001.
46. Ma D., Geng X., Dai F.F., Cressler J.D. A 6th order butterworth SC low pass filter for cryogenic
applications from −180 °C to 120 °C, Proceedings of the AEROS Conference, 2009, pp. 1-8.
47. Watson J., Castro G. High-temperature electronics pose design and reliability challenges, Analog
Dialogue, 2012, Vol. 46, No. 2, pp. 3–9.