ON THE APPLICABILITY OF FAST DIGITAL BEAM FORMING METHOD FOR SONAR SYSTEMS WITH COMPLEX SIGNALS

  • А.А. Maryev Southern Federal University
Keywords: Multibeam sonar, directional pattern, fast Fourier transform, narrowband signal, antenna array

Abstract

This work belongs to the field of hydroacoustics, namely to the problem of digital
beamforming based on spatial fast Fourier transform (FFT) in a multibeam echo sounder
(MLS) with baseband digital signal processing. The applicability of FFT-based beamforming
when using relatively broadband signals is considered. The main attention is paid to the MLS
with a static beam pattern, at the same time, obtained results are also applicable to ranging
systems that provide dynamic beam control. The aim of the study is to establish the relatio nship
between the relative width of the signal spectrum and signal level in the spatial channel
of the MLS with a given maximum beam steering. A qualitative condition for the applicability
of FFT-based spatial beamforming for a probing signal with a given relative bandwidth is
determined. An analytical expression linking the signal attenuation coefficient in the spatial
channel with the following signal and receiver characteristics was obtained: the number of
elements of the linear equidistant antenna array, the distance between array elements, beam
steering, the correlation function of the complex envelope of the signal, the window function
for weighting the matched filter response in spectral domain. Presented results can be useful
in designing multibeam echo sounders, providing high resolution both in range and in angular
coordinates.

References

1. Katenin V.A., Boykov A.V., Chernukho G.S., Katenin A.V. Teoriya, ustroystvo i sposoby
ispol'zovaniya mnogoluchevogo ekholota: ucheb. posobie [Theory, device and methods of using
a multipath echo sounder: textbook]. Moscow: Moskovskaya gosudarstvennaya akademiya
vodnogo transporta, 2013, 202 p.
2. Zhou T., Li S., Li H. and Yin L. Application of aperture extrapolation beamformer in
multibeam bathymetric sonar, IEEE 10th International Conference on Signal Processing Proceedings,
2010, pp. 2349-2352.
3. Jung J., Park J., Choi J. and Choi H. Terrain Based Navigation for an Autonomous Surface
Vehicle with a Multibeam Sonar, OCEANS 2019 - Marseille, 2019, pp. 1-4.
4. Markovich I.I., Dushenin Yu.V. Primenenie poiskovykh mnogoluchevykh gidroakusticheskikh
sredstv s tsifrovoy prostranstvenno-vremennoy obrabotkoy signalov v amfibiynoy aviatsii
[Application of search multipath sonar with digital spatial-temporal signal processing in amphibious
aviation], Gidroaviasalon-2014: X mezhdunarodnaya nauchnaya konferentsiya po
gidroaviatsii: Sb. dokladov. Gelendzhik, 05–06 sentyabrya 2014 goda [Gidroaviasalon-2014:
X International Scientific Conference on hydroaviation: Collection of reports. Gelendzhik,
05-06 September 2014]. Gelendzhik: Izdatel'skiy otdel TsAGI, 2014, pp. 231-237.
5. Markovich I.I. TSifrovaya obrabotka signalov v sistemakh i ustroystvakh [Digital signal processing
in systems and devices]. Rostov-on-Don: YuFU, 2012, 234 p.
6. Krivtsov A.P., Smol'yaninov I.V. Algoritm korrektsii ekho-signalov v mnogoluchevom
ekholote s LChM zondiruyushchim signalom [Algorithm of correction of echo signals in a
multipath echo sounder with an LFM sounding signal], Zhurnal radioelektroniki [Journal of
Radio Electronics], 2020, No. 2, pp. 9.
7. Zaytsev A.A., Markovich I.I. Tsifrovaya prostranstvenno-vremennaya obrabotka gidroakusticheskikh
signalov v mnogoluchevykh ekholotakh i vperedsmotryashchikh lokatorakh [Digital
space-time processing of sonar signals in multipath echo sounders and forward–looking
locators], Fundamental'naya nauka – voenno-morskomu flotu: Mater. kruglogo stola v
ramkakh VI Mezhdu-narodnogo voenno-morskogo salona (MVMS-2013), Moskva, 02 iyulya
2013 goda [Fundamental Science - to the Navy: Materials of the round table within the
framework of the VI International Naval Salon (MVMS-2013), Moscow, July 02, 2013]. Moscow:
Reklamno-izdatel'skiy tsentr "Tekhnosfera", 2014, pp. 203-218.
8. Markovich I.I. Tsifrovaya prostranstvenno-vremennaya obrabotka signalov v mnogoluchevom
gidrolokatore morskogo podvodnogo robototekhnicheskogo kompleksa [Digital spatiotemporal
signal processing in a multipath sonar of a marine underwater robotic complex], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2019, No. 1 (203), pp. 239-248.
9. Knight W.C., Pridham R.G. and Kay S.M. Digital signal processing for sonar, in Proceedings
of the IEEE, Nov. 1981, Vol. 69, No. 11, pp. 1451-1506.
10. Okino M. and Higashi Y. Measurement of seabed topography by multibeam sonar using CFFT,
in IEEE Journal of Oceanic Engineering, October 1986, Vol. 11, No. 4, pp. 474-479.
11. Shah G.S. and Talukdar K.K. A study of enhanced signal processing on multibeam bathymetric
data, Oceans '99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition.
Conference Proceedings (IEEE Cat. No.99CH37008), 1999, Vol. 2, pp. 904-909.
12. Barbu M., Kaminsky E.J., & Trahan R.E. (n.d.). Fractional Fourier Transform for Sonar Signal
Processing, Proceedings of OCEANS 2005 MTS/IEEE.
13. Zarayskiy V.A., Tyurin A.M. Teoriya gidrolokatsii [The theory of sonar]. Leningrad: VMA,
1973, 604 p.
14. Gonorovskiy I.S. Radiotekhnicheskie tsepi i signaly: ucheb. posobie dlya studentov vuzov,
obuchayushchikhsya po napravleniyu podgotovki "Radiotekhnika" [Radio engineering circuits
and signals: a textbook for university students studying in the field of training "Radio Engineering"].
5th ed. Moscow: Drofa, 2006, 719 p.
15. Baskakov S.I. Radiotekhnicheskie tsepi i signaly: ucheb. dlya vuzov po spetsial'nosti
"Radiotekhnika" [Radio engineering circuits and signals: a textbook for universities in the specialty
"Radio Engineering"]. 5th ed. Moscow: Vysshaya shkola, 2005 (GUP Smol. obl. tip. im.
V.I. Smirnova), 462 p.
16. Fedosov V.P. Radiotekhnicheskie tsepi i signaly: dlya samostoyatel'nogo izucheniya: ucheb.
Posobie [Radio circuits and signals: for self-study: textbook]. Taganrog: Izd-vo TRTU, 2004,
208 p.
17. Maranda B. Efficient digital beamforming in the frequency domain, The Journal of the Acoustical
Society of America, 1989, Vol. 86 (5), pp. 1813-1819.
18. Rabiner L., Gould R. Teoriya i primenenie tsifrovoy obrabotki signalov [Theory and application
of digital signal processing]. Moscow: Mir, 1978.
19. Sergienko A.B. Tsifrovaya obrabotka signalov [Digital signal processing]. Saint Petersburg:
Izd-vo «Piter», 2002, 608 p.
20. Markovich I.I. Algoritm tsifrovoy prostranstvenno-vremennoy obrabotki signalov lokatora
prepyatstviy s izmereniem skorosti i napravleniya dvizheniya podvodnykh ob"ektov [Algorithm
of digital spatiotemporal processing of obstacle locator signals with measurement of
speed and direction of movement of underwater objects], Superkomp'yuternye tekhnologii
(SKT-2018): Mater. 5-y Vserossiyskoy nauchno-tekhnicheskoy konferentsii: v 2-kh t. Rostovna-
Donu, 17–22 sentyabrya 2018 goda [Supercomputer technologies (SKT-2018): Materials
of the 5th All-Russian Scientific and Technical Conference: in 2 vols. Rostov-on-Don,
September 17-22, 2018]. Rostov-on-Don: YuFU, 2018.
Published
2023-02-27
Section
SECTION II. INFORMATION PROCESSING ALGORITHMS